NAVAL POSTGRADUATE SCHOOL
Monterey, California

THESS

BOOTSTRAP BASED SIGNAL DENOISING

by

Hasan Ertam Kan

September 2002
Thess Advisor: Monique P. Fargues
Co-Advisor: Raph D. Hippengtid
Second Reader: Roberto Crigti

Approved for public release; distribution isunlimited.



THISPAGE INTENTIONALLY LEFT BLANK



REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including
the time for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and
completing and reviewing the collection of information. Send comments regarding this burden estimate or any
other aspect of this collection of information, including suggestions for reducing this burden, to Washington
headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite
1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project
(0704-0188) Washington DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

September 2002 Master's Thesis
1. TITLE AND SUBTITLE: Bootstrap Based Signal Denoising 5. FUNDING NUMBERS

6. AUTHOR Hasan Ertam Kan

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING
Nava Postgraduate School ORGANIZATION REPORT
Monterey, CA 93943-5000 NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
N/A AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the Department of Defense or the U.S. Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE
Approved for public release; distribution is unlimited.

13. ABSTRACT (maximum 200 wor ds)

This work accomplishes signal denoising using the Bootstrap method when the additive noise is Gaussian. The noisy signal is
separated into frequency bands using the Fourier or Wavelet transform. Each frequency band is tested for Gaussianity by
evaluating the kurtosis. The Bootstrap method is used to increase the reliability of the kurtosis estimate. Noise effects are
minimized using a hard or soft thresholding scheme on the frequency bands that were estimated to be Gaussian. The recovered
signal is obtained by applying the appropriate inverse transform to the modified frequency bands. The denoising scheme is
tested using three test signals. Results show that FFT-based denoising schemes perform better than WT -based denoising
schemes on the stationary sinusoidal signals, whereas WT -based schemes outperform FFT-based schemes on chirp type
signals. Results also show that hard thresholding never outperforms soft thresholding, at best its performance is similar to soft
thresholding.

14. SUBJECT TERMS 15. NUMBER OF
Denoising, Bootstrap, Kurtosis. PAGES
109
16. PRICE CODE
17. SECURITY 18. SECURITY 19. SECURITY 20.LIMITATION
CLASSIFICATION OF CLASSIFICATION OF THIS CLASSIFICATION OF OF ABSTRACT
REPORT PAGE ABSTRACT
Unclassified Unclassified Unclassified UL
NSN 7540-01-280-5500 Sandard Form 298 (Rev. 2-89)

Prescribed by ANS| Std. 239-18



THISPAGE INTENTIONALLY LEFT BLANK



Approved for public release; distribution is unlimited.
BOOTSTRAP BASED SIGNAL DENOISING
Hasan E. Kan

Firg Lieutenant, Turkish Army
B.S, Turkish Army Academy, 1996

Submitted in partid fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL

September 2002
Author: Hasan E. Kan
Approved by: Monique P. Fargues
Thess Advisor

Raph D. Hippendtid
Co-Advisor

Roberto Cridti
Second Reader

John P. Powers
Chairman, Electrica and Computer

Engineering Department



THISPAGE INTENTIONALLY LEFT BLANK



ABSTRACT

Thiswork accomplishes signd denoising using the Bootstrap method when the
additive noiseis Gaussan. The noisy Sgnd is separated into frequency bands using the
Fourier or Wavelet transform. Each frequency band is tested for Gaussianity by
evauating the kurtoss. The Bootstrap method is used to increase the rdighility of the
kurtosis esimate. Noise effects are minimized using a hard or soft thresholding scheme
on the frequency bands that were estimated to be Gaussian. The recovered signd is
obtained by applying the appropriate inverse transform to the modified frequency bands.
The denoising scheme is tested using three test Sgnas. Resullts show that FFT-based
denoising schemes perform better than WT-based denoising schemes on the Sationary
snusoidd sgnas, whereas WT-based schemes outperform FFT-based schemes on
chirp type Sgnals. Results dso show that hard thresholding never outperforms soft
thresholding; a best its performance is Smilar to soft thresholding.
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EXECUTIVE SUMMARY

The main god of this thesi's was to develop a denoising scheme to recover Sgnas
that are distorted by additive white Gaussian noise, regardless of the signal’ s sperctra
content. Two approaches were investigated, a short-time Fourier transform and awavelet
transform:based approach. Both transforms are used to decompose asignd into severd
frequency bands and to minimize the noise in each band. Each frequency band content is
tested for Gaussanity, which is accomplished by investigating the sgnd’ s kurtoss. It is
well known that the sgnd kurtosisis equd to three only when the sgnd is Gaussan with
zero mean. Therefore this parameter can help to provide a reliable determination whether
or not a data sequence is Gaussian. However, the kurtosis estimate of a short data
segment is not always religble. The Bootsirap method is used in the kurtos's estimation to
overcome this difficulty. The Bootdrap isadatigtica scheme, which improvesthe
religbility of a parameter estimate in Situations where conventiona techniques are not
vaid because of short data length issues. The Bootstrap uses data sequences that have the
same length asthe origind sgnd, but are obtained by randomly resampling the data
using replacement. These resampling is done many times and each data set is treated as
repeated experiment. Then, the parameter of interest is estimated for each of these
resampled sequences, to obtain a datistic for the parameter of interest. This resulting
gatistic can then be used to perform hypothesis tests on the parameter vaue.

If the band is estimated to be Gaussan (i.e,, the noise is dominant), then
thresholding is applied to the band to minimize the noise effects. Two thresholding
techniques are considered, hard and soft threshold. Hard thresholding coefficients are O
for Gaussan dataand 1 for non-Gaussian data. Whereas soft thresholding coefficients are
obtained by consdering the data’ s closeness to Gaussianity. The closer to being Gaussan
the band specific datais, the smdler the soft thresholding coefficients are and vice versa.
The denoised Sgnd is obtained by gpplying the gppropriate inverse transformation.

Three different test Sgnal types are selected to investigate the performances. a
snusoid, a chirp with congtant amplitude, and a chirp with an RC time congant-like

XV



amplitude increase. The mean square error (MSE) and a distance measure defined
between original and recovered signas are selected to compare performances. Results
show FFT-based denoising schemes perform better than WT-based denoising schemes on
the stationary snusoid signd type, whereas WT-based schemes outperform FFT-based
schemes on chirp type signds. Findly, results show that the soft thresholding scheme
aways performs at least aswell as or better than the hard thresholding one.



l. INTRODUCTION

In many data transmission and storage systems, noise gets introduced into data,
which reduces the sgnd quality. As aresult, various filtering techniques have been

designed to suppress noise contributions in order to improve the overdl sgnd qudity.

Fourier and Wavelet transforms decompose anoisy sgnd into severd frequency
bands. Traditiond filter desgn methods have requirements on the frequency, magnitude
and phase of the signal such as passhand ripple, sopband attenuation, trangtion width,
and phase condraints. The assumption behind these design criteriais that the Sgnd is
restricted to be in a certain frequency band and that the frequencies outside this specific
band are treated as distortion. Note that this paradigm bresks down when sgnd and

digtortion terms overlgp in frequency.

Denoising attempts to remove the noise and to recover the origind signa
regardless of the sgnd’ s frequency content. The basic ideaisto look at each frequency
band of interest and to minimize its noise effect by retaining the dominant component.
The band isleft untouched when the sgnd is dominant so as not to lose the signd
component, while thresholding is gpplied when the noise is dominant.

This thes's discusses a denoising scheme that implements frequency band specific
thresholding schemes using the Bootstrap method and the kurtosis. Chapter 2 presents the
processing techniques and the Bootstrap method. Chapter 3 discusses the proposed
denoising scheme. Simulation results are presented in Chapter 4. Finaly, Chapter 5

presents conclusions.
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II. BACKGROUND

A. PROCESSING TECHNIQUES

Sgnd processing dlows usersto extract relevant information from agiven sgnd.
When the raw data does not alow extracting the desired information, transformations to
another domain may be performed to do so. The most common transformation types are
the Fourier and Wavd et transforms, which are discussed in the following two sections.

1 Fourier Analysis

Fourier analyss dlows the representation of agiven sgnd asalinear
combingtion of complex snusoids with different frequencies. For periodic Sgnasthisis
cdled the Fourier Series. This representation becomes extended to the Fourier
Transform when the Sgnd is gperiodic. Both representations are discussed in the
following subsections.

a Fourier Series

A periodicsgnd x(t) with period T, may be represented as an infinite

linear combination of complex exponentids:

k2Pt
T

xt)=84 ae ", 2.1)
k=-¥

k2P

where f, =1/T, isthe fundamental frequency, e ™ iscaled the k™ harmonic, and a is
the k™ weight. This representation is called the Fourier series representation [1], where
the set of coefficients a, are caled the Fourier series coefficientswhich are obtained by

1. -jk%t
ak=T—oX(t)e °dt, k=-¥,.,¥. (2.2)

0T,

The coefficients a’ s are ameasure of the strength of the signal’ s components at the k™
harmonic of the fundamenta frequency.



b. Fourier Transform
For gperiodic signals the Fourier series representation can be extended.
Assuming that x (t) isaperiodic sgnd with aperiod T;, and x(t) represents one period
of x,(t),thenas T, increases X, (t) isidentica to x(t) over alonger interval. Therefore,
inthelimiting case [2]
X(t) = Tlpl(grgé X, (1) - (2.3

Replacing the limits of the integrd in equation (2.2) by - ¥ and ¥ , and multiplying both
Sdesby T, leadsto the Fourier Transform of x(t) given by

¥

X(f)= gx(e ' dt, 2.4)

where f =k/T, and X(f)=T_a,. Thelnverse Fourier Transform is used to recover the

origind Sgnd x(t) from X(f), andisdefined as

¥

X(t) = QX (f)e®"df . (2.5)

The Discrete Time Fourier Transform (DTFT) is defined for discrete-time

ggndsas

X (W) = 5 x(n) e ™", (2.6)

n=¥
and the corresponding inverse is given by

x(n) :% OX (w) e""dw . 2.7

It should be noted that the DTFT is periodic with period 2p .
The Discrete Fourier Transform (DFT) for afinite time discrete-time
ggnd x(n) with n=0,..., N - 1 isdefined as

X (k) = %’ilx(n) g 1N (2.8)

n=0

4



Itsinverseis given by

x(n) :igX(k) e ® N, (2.9)
N =0
The Fast Fourier Transform isacomputationdly efficient implementation of the
Discrete Fourier Transform when the signd length N is a power of two. The Discrete
Fourier Transform requires N? multiplications whereas the Fast Fourier Transform
requires (N /2)log, N multiplications

C. Short-Time Fourier Transform

The basic Fourier Transform alows the passage from the time domain to
the frequency domain. However, one may need to preserve both the time and the
frequency information contained in non-sationary sgnals. Unfortunately, the basic

Fourier Transform does not provide such dud information.

Time localization can be introduced by windowing the signd before using
the Fourier Transform, where the window size is sdlected short enough to assume the
ggnd ingde the window is stationary. Then, the Fourier transform may be implemented
on each windowed signd portion. The resulting transformation is called the Short-Time
Fourier Transform and expressed as

Stt, f)=cx®w(t-t)e®"dt, (2.10)

where w(t - t) denotes the diding window centered around t . Notethat S(t , )

provides atwo-dimensond representation of the sgnd frequency information a various
timest andisa“locd” spectrum of thesignd x(t) around theanalysspoint t [3].
Many different window types may be sdected, depending on the characteristics of the
Short-Time Fourier Transform desired. In addition, the window length determines the
resolution in time and in frequency; good time resol ution requires a short window,
whereas good frequency resolution requires along window. The joint time-frequency
resolution of the Short- Time Fourier Transform is limited by the uncertainty principle. A
short time window resultsin aloss of frequency resolution, and vice versa



2. Wavelet Analysis

A wavelet is defined as a smdl wave which hasits energy concentrated in time
and frequency [4]. Such a characterigtic is useful for the andysis of trangent, non
dationary or time-varying phenomena. By comparison, snusoidd functionsused in
Fourier Andlyss have a congtant amplitude.

The Wavdet Trandform (WT) provides an dternative to the Short- Time Fourier
Transform (STFT), asit uses short windows at high frequencies and long windows at low
frequencies [5], while the STFT uses windows of congtant Sze, asillugtrated in Figure 1.
Note that the Wavelet Transform dlill satisfies the uncertainty principle, however, the
time resol ution becomes arbitrarily good a high frequencies, while the frequency
resolution becomes arbitrarily good &t low frequencies. The following subsections
discuss different types of Wavelet Transform that are used for continuous or discrete time

sgnds.

frequency frequency
A A

—> 7t < time time
(a) STFT (b) WT

Figurel. (8 Time-Frequency resolution for the STFT, (b) Time-Frequency resolution for the WT.



a The Continuous Time Wavelet Transform

The Continuous Time Wavel et Transform may be gpplied to continuous

sgnds and two dimensonsin the transfer domain are continuous. It is Smilar to the
Fourier Transform in that, it is obtained by projecting the sgnd onto a basis function.
However, the Continuous Time Wavelet Transform projects the signal onto scaled and
shifted versgons of the waveet function while the Fourier Transform uses complex
exponentids as basis functions. The Continuous Time Waveet Transform is defined as

C(st) =L ey (Yot
L] Jg > S ]
wherey (t) isthe wavelet function, t denotes the shift in time and sis the scale factor

that denotes compression or expanson in time. The inverse transform for finite K is
obtained by

1 t-t
X(t) = KCD?C(SI )% (T)det :

where the parameter K is given by

K

Y
_07 W,

Wl

and Y (w) istheFourier Transform of the waveet function 'y (t) . [6]
b. The Discrete Time Wavelet Transform

The Discrete Time Wavdet Trandform is the discrete time version of the
Continuous Wavdet Transform. It is used for discrete time sgnds and the dimensions of

the transform domain are discrete as wdl. The Discrete Wavelet Transform is obtained as

Clab) =3 %x(n)y (”'Tb),

where a, b and n are the discrete parameter versionsof s, t and t given in Equetion

(2.11), respectively. The scaling factor a has another restriction as a = a) where

(2.11)

(2.12)

(2.13)

(2.14)



]=0,1,...,log(signal length). The common choicefor a, is2, asit dlowsfor fast
agorithms.

C. Mallat’s Algorithm

The Discrete Wavd et Transform, can be implemented by usng Mdlat's
dgorithmwhen a, = 2 [4], and isillustrated in Figure 2 for athree-level decomposition.
The sgnd is passed through a high-pass and a low- pass filter, both of which have a
bandwidth of haf the sgna spectrum. Then, following the Nyquist's rule, the outputs of
the filters are subsampled by two. The subsampled high-pass filter output is caled the
Detail Sequence and the subsampled low-passfilter output is caled the Approximation
Sequence. This procedure may be recursively applied to the approximation sequence
obtained at previous levels. Note that asigna of length 2! can be decomposed only |
times, because the gpproximation sequence has only one sample left after j levels.

() I:Hh@dl
P ) <)
LPL i I—IPLEL’

e
TR

ds

Figure2.  Malat’'sagorithm.

B. HIGHER ORDER STATISTICS
1. Moments and Cumulants

The firgt four moments for ared vaued and saionary sgnd x(n) are given by
m, = E{x(n)}, (2.15)

my(t,) = E{x ()x(n +t,)}, (2.16)



my(t, £,) = E{x(Mx(n+t)x(n+t,)},

Mt 5 0) = EQX(n+,)x(n +t,)x(n+t,)}.

Thefirst two moments are equa to the mean and corrdation functions respectively. The

firg four cumulants are given by

G =m,
CZ(tl):m2¢ 1)' rnl(tl)27
Cylt ko) =my(ty ko) - mIm(ty) +my(t,) +myt, - ty)] +2(m)°,

Culto totg)=my(t t,ts)- m(ty)m(t,-t,)- mt)mt,-t)
- mz(ts)n}(tz'tl)' rTﬁ[rrk(tz't11t3't1)
Myt ty) Fmy ) tma(t,t,)]
+ (M)’ [my(t ) + my(t,) + my )+ my(t,-t,)
My (s~ t,) +my(t, - t,)] - 6(m)*,

Note that the second and third order cumulants are identica to the second and third order

moments respectively when x(n) isazero-mean process.

Cumulants have properties that make them more desirable than moments. Some

of these properties are
a Each cumulant is independent of dl lower order cumulants.

b. All cumulants of order grester than two are equd to zero for Gaussian
processes. Hence, any Gaussian process is completely characterized by itsfirst two
cumulants. Therefore higher-order cumulants can be used to estimate the degree of non-

Gaussanity of a process.

C. Cumulants of the sum of two independent Statistical processes are equd to
the sum of their respective cumulants. [6]

2. Variance, Skewness and Kurtosis M easur es

Sating t,,t,,t, equa to 0in (2.20), (2.21), (2.22), and assuming thet m; =0, leads

to the variance g, , skewness g,, and kurtosis g, measures.
9
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(2.20)

(2.21)

(2.22)



g, = E{x(n)z} =c,(0), (2.23)

g, = —E{X(gn i (2.24)
S
= E) (2.25)
s* '

where s isthe standard deviation around the mean of the signd. [7]

C. THE BOOTSTRAP

The Bootstrap is a powerful technique for ng the accuracy of a parameter
estimator in Stuations where conventiond techniques are not applicable [8]. In many
goplications, one needs to estimate one or more parameters of arandom process, and/or
cadculate some satistical parameters such as the mean or variance. Most of the estimation
techniques used for this purpose assume that the set of samples used in the estimation is
large enough to reach asymptotic results. However, in practice this assumption usualy
does not hold as the sample set may not be large enough or the samples may be nor+
gationary. The Bootstrap scheme randomly reassigns the observations, recomputes the
estimates many times, and trests these reass gnments as repeated experiments. In this
section, first the basic Bootstrap principle is stated. Next, the usage of Bootstrap in
esimating the confidence interva for a parameter is discussed, and findly this discusson
is extended to hypothesis testing.

1. Basic Principle

Let x={x1, X2,..., Xn} beacollection of nindependent and identically distributed

random variables drawn from an unknown digribution, D. Let p denote an unknown

datistica parameter of D such as the mean or the variance, and E) denote an estimator of
p, caculated from x. If the estimate E) isto be used in place of the red parameter p, it
may be important to know the sampling digtribution of E) . The digtribution of f) may be
edtimated with the Bootstrap method, and is obtained by resampling many timesfrom a

diribution D, chosen to be dloseto D, such that D approaches D as n® ¥ . Note that
10



thechoiceof D isnot unique. If thetype of D isknown but its statistica parameters are

not known, then D is chosen as a distribution of the same type as D, with the Satidtica
parameters obtained from x. For example, if we know that the datais Gaussian but do not
know its mean and variance, we perform the resamplings assuming the data to have the
same mean and variance as X has. This approach is cdled the parametric Bootstrap. If
nothing is known about D, the resamplings are drawn from x with replacement, so that
each vaue in aresample set has probability equa to 1/n. This gpproach is called the
nonparametric Bootstrap.

2. Parameter Confidence Interval

The Bootstrap principle may aso be gpplied to obtaina (1- a )100% confidence
interva for the parameter p. Fird, the data set is resampled many times such that each

resampled set is of the same Sze asthe data. Next, an estimator Bk is obtained from each

resampled set, where k =1,..., N and N is the number of repetitions. Then, the estimates
E)k are sorted in increasing order. Findly the indices of the lower limit E)L and the upper

limit p, of the estimatesin

P(p £ p£p,)=1-a (2.26)
are obtained by using
L= EN—aE (2.27)
and
U=N- L+1 (2.28)

where gA({] denotes the integer part of the value A.[8]

3. Hypothesis Testing

a. Description
Suppose one needs to perform ahypothesistest, suichas H: p£ p,
againd the hypothesis K : p> p,, where p, isgiven. A new datistic, defined as

11



/F\)_ po

T: A
S

(2.29)

may be selected, where s istheesimator of the sandard deviation s of f) . The
estimator for the standard deviation s of p will be defined later.
To perform the hypothess testing, one first draws random sequences

X, %, ..., Xy, , Of the same size as x, with replacement from x. Note that ~ does not denote

complex conjugation, but means that thisis aresampled s&t, or a parameter obtained from

aresampled set. Then the statistic T is estimated from each sequence X as

ol

T =P P (2.30)

~

S

where f) and's * are estimated parameters obtained from the resample X, instead of X,
and the congtant p, is replaced with f).Notethat s isinduded asascaefactor in the
calculationof T . Dividing by s iscaled Bootstrap pivoting and it is done to ensure T
isasymptoticaly pivotd when n® ¥ , i.e,, the asymptotic distribution of T doesnot
depend on any unknown parameters. Replacing p, with E) and using Bootstrap pivoting
isimportant because the Bootstrap distribution of T = (f)* - B)/sf* is a better
gpproximation to the distribution of T= (f) - Po) /s under H, than the Bootstrap
disribuionof S =p - p istothedisributionof S=p - p, under H [8, 9]. Next, the
St of test Satistics fi ,f; yoe ,'IA'*N are sorted by increasing order, and the hypothesisH is

rgected if T> -lﬁ*(M) , Where M is chosen according to N and the level of Sgnificance a as

[8, pp. 62]
M = (N +1)(1- a). (2.31)

12



Note that the test tatistic T isgiven by

~ ‘p' Po
T="—"snr
S

when the hypothesesto betestedare H: p=p, agang K: p* p,.
b. Estimation of the Standard Deviation for E)

The parameter S can be etimated by using the Bootstrap. Towards that

end, resamples of the same length asthe data set x, caled X are drawn from x randomly
with replacement, to obtain atota of B resamples. After resampling, the Bootstrap

estimates B are calculated in the same manner as E) was, but with resamples X' instead

of x. Asaresult, the sandard deviation s of [3 is estimated by

S =|-18 (h-18 By
B-14 P ga P

In this chapter we presented the processing techniques that we used in the

proposed denoising scheme. In the next chapter we will discuss the proposed denoising

scheme.
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I1l. DENOISING USING THE KURTOSISAND THE BOOTSTRAP

A. INTRODUCTION

Fourier and Waveet transforms decompose asSgnd into severd frequency bands.
As aresult, white Gaussian noise components affect dl frequency bands. The proposed
technique examines each frequency band and tends to minimize the white noise
contribution. Firgt, we obtain the signd time—frequency representation (or time-scale
representation in the Wavelet transform case). Next, each frequency band is tested for
Gaussianity, and thresholding is performed on the spectral location found to be Gaussian.
Lagt, the sgnd istransformed to the time domain using the gppropriate inverse
transform. The following sections discuss two different implementations using Fourier
and Wavdet transformations.
B. FAST FOURIER TRANSFORM BASED DENOISING

The FFT-based denoising scheme is performed in four steps, asilludtrated in
Figure 3. For computationa convenience, the signa length is assumed to be 512 points.
A longer data set could have been used, resulting in more frequency bands, and more
computations. A data set of minimum length of 512 alows separation in time and
frequency. A shorter segment will not provide a reasonable number of time-frequency
cdls,

r-r-=-=-=—=-=7—=77 1 r—-—-r—-——=—=77
I | 1
I 1 1
| 1 1
I | 1
: : : | Gaussianity)
! ! ' test
: | afred
- F
original ! |4:1 overlap I ! recovered
signal_’ ! windowing $ 1 X(t,) : signal
|

noise | : | imaginary
| | 1
! I 1| |Gaussianity|
| | P test
1 | 1
1 1 1
| 1 1
I | 1
oo ! -

Step 1 Step 2

Figure3.  FFT-based denoising scheme.
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1 Short-Time Fourier Transform Step
In the first step, the datais divided into 32 data- point segments and weighted by a

triangular window. A four-to-one overlap is used to obtain areasonable data size. Then,
each segment is transformed to the frequency domain with the Fast Fourier Transform.
Thisresultsin 17 frequency bands. A larger data set would have dlowed for alarger
segment Sze. The STFT information is contained in a matrix of dimensons 61 by 32
elements for a data length of 512 points, where the first number corresponds to the time
dimension and the second one corresponds to the frequency dimension.

2. Gaussianity Test Step

The second step tests the Gaussianity of the transformed vaues in each frequency
band, where red and imaginary parts of the data are tested separately with the kurtoss.
Recdl that the normalized kurtosis vaue for a Gaussian data sequenceis equal to 3.
Hence, looking at the kurtoss value may give an idea of a sequence’ s Gaussanity,
provided the data length is sufficient for the estimation to be meaningful. However, the
sequencesin this particular scheme are of length equd to 61, which may not be sufficient
for meaningful esimations. Therefore, the Gaussanity test isimplemented asa
hypothesis test, with the hypothesis H :kurtosisof thedata =3, and the hypothesis

K :kurtosisof thedata ! 3. The sequenceis found to be Gaussian when the hypothesis H
istrue, meaning the kurtosis value for the data sequence is 3 within the specified
confidence interva. However, the sequence is found to be non-Gaussian when hypothesis
K istrue, meaning the kurtosisis not equa to 3 within the selected confidence interval.
This hypothesstesting is performed using the Bootstrgp method discussed earlier in
Chapter 2. An empiricd confidenceinterval a =0.05 was selected here.

3. Thresholding Step

Signd components are found in a particular sequence when some frequency
bands are estimated to be non-Gaussan for both real and imaginary parts. Thresholding is
applied to each band estimated to be Gaussan, to minimize noise effects in these bands.
Two thresholding schemes are considered below.

16



a. Hard Thresholding

Hard thresholding zeroes out dl vauesin the frequency band that is found
to be Gaussan. The hard thresholding coefficient is

_1 0, if thebandisGaussian

1y , . (3.2
11, if thebandisnotGaussian.

G,

b. Soft Thresholding

Soft Thresholding is obtained by multiplying vauesin the specific
frequency band that is found to be Gaussian, by a coefficient between O and 1. Using a
coefficient of 0 is the same as hard thresholding, whereas using a coefficient of 1 isthe
same as leaving the frequency band undisturbed. The soft thresholding coefficient is
caculated usng
-

C, = T (3.2

(03]

where g, is the bootstrapped kurtosis of the particular frequency band, and | | denotes

the absolute value. The bootstrapped kurtosis vaue @1 islimited not to exceed 4.5, which

will be explained later. The bootstrapped kurtosis value @1 is obtained by using the
Bootstrap principle, which cals for resamplings from the data set many times with
replacement, to obtain N resampled sets of the same length asthe original data set. Next,
the kurtoss vaue for each resampleis found. Findly, the Bootstrapped kurtosis g/;; is
defined as the estimated mean obtained from N kurtosis values. It should be noted that the
thresholding coefficient ¢ is afunction of the frequency band's degree of Gaussanity.
Equation (3.1) shows that the coefficient ¢ gets closer to O as the bootstrapped kurtos's
vaue @1 for a gpecific frequency band gets closer to the theoretica value 3, and vice
versa. Therefore, the closer afrequency band getsto being Gaussian, the smaller

contribution it has after soft thresholding.

Recall that frequency bands to be thresholded are those that passed the
Gaussanity test. Therefore, one would expect their corresponding bootstrapped kurtosis
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estimates to be close to the theoretica value 3. However in some cases, the estimated
bootstrapped kurtosis value may be far off from 3. For example, afew vauesin the band
may be higher than the others epecidly when a frequency bin contains a short data
segment. In this case, the band may pass the Gaussianity test as most of the band is
Gaussian, but may gill have a bootstrapped kurtosis vaue high enough to obtain a
thresholding coefficient ¢ greater than 1. Note that a thresholding coefficient greater than
1 would amplify noise contributions in the frequency band, instead of suppressing them.

Therefore, the bootstrapped kurtosis value @1 islimited to 4.5in (3.1) to avoid such

potential noise amplification. This vaueis chosen empiricaly. Thus, if the bootstrapped
kurtosis vaue of a pecific frequency band is grester than 4.5, the data point with the
largest absolute value in that band is stored away and replaced with a zero. Then, the
bootstrapped kurtosis for that band is estimated again. This procedure is repeated until a
kurtosis value less than or equd to 4.5 is obtained. However, the number of repetitions
should be limited to ensure that most of the datais not zeroed out, to prevent
bootstrapped kurtosis estimation problems. An empiricd limit of one third of the number
of time frames defined in the STFT. Note that if the estimated kurtossvadue is ill
greater than 4.5 after that many iterations, then it is set to 4.5, which provides a
thresholding coefficient equd to 1. This causes no change on the frequency band under
congderation.

After multiplying the frequency band with the thresholding coefficient, the
values that were removed to limit the kurtos's estimation are reinsarted into their origina
locations. This alows for the non-Gaussan vaues, which may correspond to the sgnd
components, to not be affected by the thresholding step.

4, Inverse Fourier Transform

Red and imaginary parts of the frequency bands are combined to form the time-
frequency representation matrix after the thresholding step, and the recovered sgnd is

obtained using the inverse Fourier transform.
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C. WAVELET TRANSFORM BASED DENOISING

The Wavdet transform-based denoising schemeis similar to the FFT-based
scheme, asillugtrated in Figure 4. Note that only red vaued transforms are obtained in
this case due to the real wave et transform kernd form selected in our work (Daubechies
wavelets of order 3, 4 or 5). The choice of Daubechies wavelets was motivated by the
earlier worksin GSM dsgna denoising reported by Aktas and Mantis[10, 11]. This
denoising schemeis performed in four steps.

recovered
signa

noise

Figure4.  WT-based denoising scheme.

1. TheWavdet Transform

Firgt, the Wavdet transform is gpplied to the noisy sgnd. Three-, four-, or five-
level decompositions are considered in this work, because smulations showed that
higher-level decompositions do not improve performance, given the data length
consdered (512).

2. Gaussianity Test

The gpproximation and detall coefficients of a Gaussan data set remain Gaussan
[12]. Thus, detail and approximation coefficients are tested for Gaussanity and adecision

is made for each.
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3. Thresholding

The same thresholding procedure as that was considered earlier for the FFT-based
denoising schemeis applied to the detail coefficients. However, thresholding the
gpproximation coefficients may result in removing asgnificant portion of the sgnd. One
can use one of the following four schemes to threshold the gpproximation coefficients to
minimize potentid distortion: Apply the thresholding scheme as that used on the detall
coefficients, leave coefficients unperturbed, filter the gpproximation coefficients usng a
median filter of order three, or use apredictor of order two. The last two options were
investigated as way's to smooth the gpproximation coefficients but they did not perform
as good asthe firg two. Results for these operations are discussed in the next chapter.

4. Inverse Wavdet Transform

Finally, updated approximation and detail coefficients are inverse Wavelet
transformed to obtain the recovered sgnd.

In this chapter the proposed denoising scheme was discussed in detall. This
scheme was tested using three test Sgnds. The test signa descriptions and the smulation

results are presented in the next chapter.
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V. SIGNAL DESCRIPTION AND SIMULATION RESULTS

The denoising scheme presented in the previous chapter was tested using three
test Sgnals. The codes used for the smulations are presented in Appendix A. Inthis
chapter the test sgnas are described and the smulation results are summari zed.

A. SIGNAL DESCRIPTION

Three different types of test Sgnas are used: a Snusoid, a chirp with constant
amplitude, and a chirp with amplitude increasing in an RC time congtant fashion, not to
exceed a given maximum vaue. These sgnds are described below.

1. Sinusoidal Signal

The frequency of the snusoidd sgnd is sdlected randomly for every trid, where
the frequency rangeislimited to avoid diasing and DC sgnds. Figure 5 shows an

examplewhere f, =10/512, and the sampling frequency f, =1.

-2 I I L I I I 1 I i 1
0 50 100 150 200 250 300 350 400 450 500

Figure5.  Sinusoida test signdl; frequency f, =10/512, sampling frequency f, =1.

2. Congtant Amplitude Chirp

The congtant amplitude chirp used in the smulationsis obtained by

. a3470 ¢

S(t) :sngmg 4.2

The sgnal sampled with sampling frequency f, =1 isshown in Figure 6.a
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3. Chirp With an RC Time Congtant-Like Amplitude I ncrease

Thissgnd has afrequency sarting with ahigh vaue and decreasing in time.
However, the amplitude of the sgnd sarts with a smdl vaue and increases with time.
The increasng amplitude chirp is obtained by

(t+9)(512- 1) , aPp 547.055
521 % t+3505 5

() =

Thistest sgnd sampled with sampling frequency, f, =1, was obtained from Wavelab
[13] and isillustrated in Figure 6.b.

_2 I ! I ! I ! I I I I

0 50 100 150 200 250 300 350 400 450 500
(a) Constant amplitude chirp

2 T T T T T T T T T T

_2 I I I I I I I I I I

0 50 100 150 200 250 300 350 400 450 500
(b) Increasing amplitude chirp

Figure6. (&) Second test signd, (b) Third test signal.

B. SIMULATION RESULTS

MATLAB [14] smulations were performed to test the performance of the

proposed schemes. One hundred trias are considered for both schemes for signd-to-noise

ratio (SNR) vaues ranging between —6 dB and 6 dB. To perform the hypothesistest in
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the second step of both FFT-based and WT-based schemes, the Bootstrap MATLAB
Toolbox [15] was used. The MATLAB codeisincluded in Appendix A.

The mean square error (MSE) and cross- corrdlation coefficients between origind
and recovered sgnals were selected as performance criteria The MSE was initialy
sdected asit iscommonly used in signd processing applications to measure signa
differencesin the time domain. It is defined as:

I\/ISE=ia a

g el 8
M &N &

JOREYO s (43)

1

where M isthe number of trids, N isthe signd length, s, (i) and gj(i) aethei™ data

sample of the origina signd and the recovered signd at ™ tria, respectively. Note that
the MSE may not aways be useful in evauating actud performances. For example, ina
denoising scheme when the recovered signd is close to the originad version in most of the
sgnd duration but it is very different for a short duration, the overdl performance of the
scheme can be satisfactory but at the same time the MSE may be large. In addition,
gmulations showed the M SE performances to be very smilar on alarge portion of the
schemes investigated. Therefore, we considered an additiona performance criterion,
based on the cross- corrdation coefficient to complement the information given by the
MSE criterion. Recdll that the normalized cross-corrdation coefficient is commonly used
to evauate sgnd smilarities and is defined as

= L 2 i) 50), (4.4)

Jébmré%mrﬂ

where ()" denotes complex conjugation. Note that the cross-correlaion coefficient r

should be equd to 1 for a perfectly reconstructed noise-free sgnd. The closer the
magnitude of r getsto 0, the worse the denoised Sgnd will be. The distance measure
between 1 and the normalized cross-correlation coefficient is given by

1Yy )
:Va[l- rl’, (4.9)
j=1
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where M isthe number of triddsand r; isthe cross-correlation a |lag zero for thej™ trid.

The resulting messure d isthe additiond criterion used to evauate the denoising
schemes performances in extracting the noise-free sgnd from the noisy sgnd.

In our smulations sometimes the M SE performances of various schemes were
close to each other and it was difficult to make a digtinction among them. In this kind of

cases the distance measure r was used in making a digtinction.

The proposed denoising schemes are compared with the origind Wavelet
ghrinkage agorithm, which was introduced by Donoho and Johnstone [16, 17] to denoise
sgnas embedded in additive white Gaussian noise with unit variance. Note that our
schemes do not require knowledge of the noise variance levels to be applied, which is not
the case for the origina Donoho and Johnstone scheme. Also note that variable noise
variances had been used in the smulations for the proposed scheme. Therefore the setup
for the smulations needed to be changed before comparing the smulations for the
proposed schemes with the Wavelet shrinkage agorithm. The Wave et shrinkage
agorithm is defined and comparison results are presented in Appendix C.

1. Fast Fourier Transform-Based Denoising

Performance criteriafor the three test sgnds areillustrated for both thresholding

options, in Figures 7 to 9. Examples of noisy sgnals and their recovered versons
obtained by FT-based denoisng scheme are included in Appendix B.

a. Sinusoidal Signal

Results, shown in Figure 7, indicate that hard and soft thresholding

schemes have smilar performances at dl SNR vaues consdered.
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(a) Distance measure for sinusoidal signal
025 T T T T
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Figure7.  Distance measure d and MSE performance criteria for the sinusoidal signd; FFT-based

denoising.

b. Constant Amplitude Chirp

The M SE reaults shown in Figure 8 indicate no sgnificant differencesin
thresholding scheme performances, while the distance measure results indicate better
performance for the soft thresholding scheme a low and medium SNIR levels.
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(a) Distance measure for constant amplitude chirp signal
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Figure8.  Distance measure d and M SE performance criteriafor constant amplitude chirp signd;
FFT-based denoising.

C. Chirp With an RC Time Constant-Like Amplitude I ncrease

Results shown in Figure 9 indicate that both thresholding schemes have
gmilar MSE performances for SNR vaues beow —3 dB, and that the soft thresholding
scheme performs better for SNR vaues above —3 dB. The distance measure criterion
indicates a better performance for soft thresholding for al SNR leve s investigated.
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(a) Distance measure for increasing amplitude chirp signal
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Figure9.  Distance measure d and MSE performance criteria for increasing amplitude chirp signdl;
FFT-based denoising.

2. Waveet Transform-Based Denoising

Many parameters affect the performance of the wave et transform-based
denoising scheme. Recdl that we consder four thresholding implementation schemes on
the approximation coefficients. gpproximation coefficients left unperturbed (method 1),
approximation coefficients thresholded identica to the detail coefficients (method 2),
gpproximation coefficients median filtered with afilter of length three (method 3), and
using an order-two predictor (method 4). Methods 3 and 4 do not perform as well as the
first two methods because they oversmooth the approximation coefficients sequence,
causing loss of sgna power and degradation in the performance of the denoising scheme.
Other parameters are the number of decomposition levels and the order of the Daubechies
wavelet to be used (3, 4 and 5). The numbersin the figure legends next to the
thresholding types are the Daubechies wavelet orders. M SE values obtained for all
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schemes are close to each other and do not provide much information about relative
performances. As aresult, we consider the distance measure d to compare performances.
In addition, we only show results obtained for the best of the 4 methods for the
approximation coefficients and the best of the 3 wavelet based decompositions (3,4 or 5
level decompositions). Examples for noisy signals and their recovered versions obtained
with WT-based denoising schemes are included in Appendix B.

a. Sinusoidal Signal

Results show that best performances are obtained with method 2 for this
sgna type. Figure 10 presents the WT-based scheme performance obtained for a 4-leve
decomposition with different wavelet orders and both thresholding schemes. Note that the
snusoidal sgnd has a congtant frequency remaining in one of the frequency bands
formed by the wavelet transform for the whole signa duration. Results show thet the
performance of the WT-based denoising scheme depends on the frequency of the specific
test Sgnd and the level of wavelet decomposition. Note that test sgnd frequencies were
picked randomly for each trid. It should aso be noted that when using method 1, the
sgnd isleft untouched only when it is located in the lowest frequency band (i.e., the
band containing the gpproximation coefficients). However, noise when present is aso left
untouched in that lowest frequency band, while no such digtinction is present in method
2.

Simulation results show that the soft thresholding scheme outperforms the
hard thresholding implementation at SNR values below 2 dB, while dl thresholding
schemes perform smilarly for higher SNRs.
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(a) Distance measure for sinusoidal signal, 4 level decomposition, method 2
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Figure 10.  Distance measure and MSE for test signal 1, using a Wavelet-based 4-leve

decomposition and method 2, with Daubechies wavelet orders 3, 4 and 5.

b. Constant Amplitude Chirp

Results for the WT-based denoising scheme using 4-level decomposition

and method 1 are presented in Figure 11. Method 1 was shown here because smulations

indicated that method 1 has significantly higher performance than method 2 on the

constant amplitude chirp signd. This result was to be expected as this sgnd has most of

its power at low frequencies. Frequency components exist in severa frequency bands,
including the one containing the approximation coefficients. When method 2 is used, the

sequence of gpproximation coefficients is tested for Gaussanity and may be estimated as

Gaussian when the sgnd components are very short, resulting in thresholding of the
sgna components. However, such a problem does not exist in method 1 where the
goproximation coefficients are | eft untouched. Finaly, smulation results show that a
four-level decomposition performs better than athree or five-level decomposition.
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(a) Distance measure for constant amplitude chirp signal, 4 level decomposition, method 1
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Figure11.  Performance for constant amplitude chirp signa, using a Wavelet based 4-level
decomposition and method 1, with Daubechies wavelet orders 3, 4 and 5.

C. Chirp With an RC Time Constant-Like Amplitude I ncrease

Simulations show method 1 has the best performance of the 4 methods
investigated and associated results are presented in Figure 12. Results shown in Figure 12
indicate that amilar performances are obtained for dl thresholding schemes and wavelet
orders considered.
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(a) Distance measure for increasing amplitude chirp signal, 4 level decomposition, method 1
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Figure12.  Performance for increasing amplitude chirp signa, using a Wavelet-based 4-level
decomposition and method 1, with Daubechies wavelet orders 3, 4 and 5.

In this chapter the test Signals were described and the smulation results

were summarized. The conclusions are presented in the next chapter.
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V. CONCLUSIONSAND FUTURE WORK

A. CONCLUSIONS

Thiswork considered a Bootstrap-based denoising scheme to denoise
deterministic signa's embedded in additive Gaussian noise. The Bootstrap is a technique
derived for improving the accuracy of a parameter estimator, used especidly in Stuations
where conventiona techniques are not valid since the data considered is short in length.
Thistechnique is used for parameter estimation and hypothesis testing in our work.

The proposed Bootstrap-based denoising scheme has four steps. Firdt, the noisy
sgnd istrangformed into a two-dimensiond domain, using the Short- Time Fast Fourier
or the Waveet Transform. Next, Gaussanity tests are performed on the transformed data
on afrequency band basis. No processing is applied to the data when the tested datais
found to be non-Gaussan, asthisindicates sgnal components in the data are dominant
over Gaussian noise components. However, denoising is gpplied when the data tested is
found to be Gaussian, which indicates that the noise components are dominant. Denoising
is obtained by thresholding the frequency components in specific frequency bands to
minimize noise effects. Findly, the recovered Sgnd is obtained by gpplying the
appropriate inverse transform.

Denoising scheme performances were investigated using three test Sgnas. a
snusoid, a congtant amplitude chirp and a chirp with increasing amplitude. MSE and
cross-correlaion measures were selected to investigate the relative performances of dl
four denoising schemes congidered in thiswork. In most cases, for agiven SNR the MSE
vaues obtained for schemes with different decomposition types and levelswere Smilar a
al SNRs and were not useful in discriminating between the various schemes investigated.
However, the distance mesasure was more sensitive and showed more discriminating
information. Results show that FFT-based schemes perform better than WT-based
schemes on the stationary snusoid signa type, whereas WT-based scheme outperforms
the FFT-based scheme on the chirp signa types considered. In the FFT case, soft and
hard thresholding schemes perform smilarly onthe snusoid, while soft thresholding
outperforms hard thresholding on the chirp Sgnals. Results dso show that soft
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thresholding performs better on the stationary snusoidd sgnd type but performs smilar
to hard thresholding on the chirpsin the WT case. Note that thresholding methods are
performed on the detail coefficientsin the WT-based denoising case. However, using
them directly on the gpproximation coefficients may cause Sgnd loss. Therefore, four
schemes were congdered in the smulations: Leaving the gpproximation coefficients
untouched, using the same thresholding schemes as the detall coefficients, using amedian
filter of order 3 on the gpproximation coefficients, and using a predictor of order 2 on the
gpproximation coefficients. The second method performs best for the Snusoidal test
sgna whereas the first method performs the best for the chirp type test sgnds.

Daubechies wavelets of orders 3, 4 and 5 were selected in the WT-based
denoising scheme. Simulations show that waveets of this family with higher orders did
not improve performance for sgnaswith the given length.

The proposed denoising scheme was compared with the Wave et shrinkage
agorithm, which was introduced by Donoho and Johnstone [16, 17] to denoise signas
embedded in additive white Gaussian noise with unit variance. Results indicate thet the
proposed WT-based denoising scheme performs better than the wavelet shrinkage
agorithm for the Snusoiddl test sgna. However, the wavelet shrinkage agorithm
outperforms the proposed scheme for the chirp type test sgnals. It should be noted that
these reaults (Donoho and Johnstone) are restricted to the case of noise with unit
variance.

B. FUTURE WORK

Our study was redtricted to one wave et family (Daubechies) only and further
investigations should consider other types of wavelets to investigate the impact of the
gpecific wave et type on the resulting denoising performances.

34



APPENDIX A. MATLAB CODES

MATLAB smulations were performed to were used to test the performance of
the denoising scheme. The codes used are presented in this chapter. The first and second
sections present the codes for the FFT- and WT-based denoising schemes, respectively.
The third section presents the sub-functions that were used in both of these codes.

%testkurtv7: inplenments the FFT-based denoi sing schenme on %

% three test signals %
% %
% SYNTAX . testkurtv? %
% %
% | NPUT : none %
% %
% OQUTPUT : simulation results saved on disk %
% %
% SUB FUNC : MakeSi gnal . m %
% kurtosi stest. m %
% %
% Witten by Hasan E. KAN %

cl ear
clc
cl ose all

t=1:512;
ampl =sqrt (10.~([.6 0 -.6]));

kurli mF4. 5;

for sigtype=1:3
for trial=1:100
recksof t=zeros(l engt h(anpl), 512);
reckhard=zeros(! engt h(anpl ), 512);
if sigtype==1
s=sin(2*pi *t*(1+ceil (rand*240))/512);
s=s/sqrt(mean(s.”"2));
sigtypes='sin';
el sei f sigtype==2
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s=sin(34.7./[.01:.01:612]);
s=s(41:552);s=s/sqrt(nmean(s.”"2));
si gtypes='cch';
el seif sigtype==3
s=mekesi gnal (' Doppl er', 521);
s=s(10: 521); s=s/sqrt(nean(s.”"2));
si gtypes='ech’;
end
si gnal =ones(I| engt h(anpl ), 1) *s;
si gpw =sunq( si gnal . 2, 2)/512

n=r andn(| engt h(anpl ), 512);
noi se=((anpl ./std(n"))"' *ones(1,512)). *n;
noi pw =sum( noi se. "2, 2)/512

SNR=10*1 0og10( si gpwr . / noi pw ) ;
x=si gnal +noi se;

for snr=1:1ength(anmpl)%: 21
fx=zeros(61, 32);
for segnentno=1:61
fx(segnentno, :)=fft(x(snr, (segnmentno-

1) *8+1: (segnent no-1) *8+32). *tri ang(32)"');

end

fksoft=zeros(61, 32);

fksoftr=zeros(61, 17);

fksofti=zeros(61, 17);

f khard=zeros(61, 32);

f khardr=zeros(61, 17);

f khar di =zeros(61, 17);

kurr=zeros(Il ength(anpl), 17);

kuri=zeros(l ength(anpl), 17);

for segmentno=1:17

[fksoftr(:,segnentno), fkhardr(:, segmentno), kurr(segnentno)]=kurto
sistest(real (fx(:,segnentno)), kurlin;
if imag(fx(:,segnentno))~=0

[fksofti(:,segnentno), fkhardi(:, segnentno), kuri (segnentno)]=kurto
sistest (i mg(fx(:,segnmentno)), kurlim;
end
end
fksoft(:,1:17)=fksoftr(:,1:17)+ *fksofti(:,1:17);
fkhard(:, 1:17)=fkhardr(:, 1:17) +j *fkhardi (:, 1: 17);
fksoft(:,18:32)=conj (fliplr(fksoft(:,2:16)));
fkhard(:, 18:32)=conj (fliplr(fkhard(:,2:16)));
for segnentno=1:61
recksoft(snr, (segnment no- 1) *8+1: ( segnent no-
1) *8+32) =r ecksof t (snr, (segnment no- 1) *8+1: ( segnment no-
1)*8+32) +i fft (fksoft(segnentno,:));
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reckhard(snr, (segnent no- 1) *8+1: ( segnent no-
1) *8+32) =r eckhar d(snr, (segnent no- 1) *8+1: ( segnent no-
1)*8+32) +i fft (f khard(segnentno, :));
end

end

recksoft=recksoft*0. 5;

reckhar d=r eckhar d*0. 5;

msesoft (:,trial)=sum((signal-recksoft).”2,2)/512;

nmsehard(:,trial)=sum((signal-reckhard).”2,2)/512;

for snr=1:21

corsoft(snr,trial)=xcorr(s,recksoft(snr,:),0,"' coeff');

corhard(snr,trial)=xcorr(s, reckhard(snr,:),0, ' coeff');
end
end
save(sprintf (' mse%', sigtypes), ' nsened' ,' nsesoft',' nmsehard')
save(sprintf('cor%', sigtypes), ' corsoft','corhard')
end

%testkurtv7: inplements the W-based denoi sing schenme on %

% three test signals %
% %
% SYNTAX . testwav? %
% %
% | NPUT : none %
% %
% OQUTPUT : simulation results saved on disk %
% %
% SUB FUNC : MakeSignal.m %
% kurtosi stest. m %
% %
% Witten by Hasan E. KAN %

cl ear
clc
cl ose al

t=1:512;
anpl =sqrt (10.~([.6 0 -.6]));

kurlimF4. 5;

rec5db3soft =zeros(l engt h(anpl ), 512, 4);
rec5db3har d=zer os(l engt h(anpl), 512, 4);
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rec4db3sof t =zeros(Il engt h(anpl ), 512, 4);
rec4db3hard=zeros(l engt h(anpl), 512, 4);
rec3db3soft =zeros(l ength(anpl), 512, 4);
rec3db3hard=zeros(l ength(anpl), 512, 4);

rec5db4soft =zeros(| engt h(anpl), 512, 4);
rec5db4har d=zer os(l engt h(anpl ), 512, 4);
rec4db4dsoft =zeros(|l ength(anpl), 512, 4);
rec4db4har d=zer os(|l engt h(anpl), 512, 4);
rec3db4soft=zeros(l ength(anpl), 512, 4);
rec3db4har d=zer os(l engt h(anpl), 512, 4);

recbdb5soft =zeros(| engt h(anpl ), 512, 4);
rec5db5har d=zeros(1 engt h(anpl ), 512, 4);
rec4db5soft =zeros(Il engt h(anpl ), 512, 4);
rec4db5har d=zeros(|l engt h(anpl ), 512, 4);
rec3db5soft =zeros(|l engt h(anpl ), 512, 4);
rec3db5hard=zeros(l engt h(anpl), 512, 4);

for sigtype=1:3
for trial=1:100
if sigtype==1

s=sin(2*pi *t*(1+ceil (rand*240))/512); s=s/sqrt(sun(s.”2)/512);

sigtypes='sin';

el seif sigtype==2

s=sin(34.7./[.01:.01:612]); s=s(41:552);s=s/sqrt(sun(s.”"2)/512);

si gtypes=' cch’

el seif sigtype==3

s=makesi gnal (' Doppl er',521); s=s(10: 521); s=s/sqrt(sun(s.”"2)/512);

si gt ypes=' ech’

end

si gnal =ones( | engt h(anpl ), 1) *s;
si gpw =sun{si gnal . *2, 2)/ 512

n=r andn(| engt h(anpl ), 512);

noi se=((anpl./std(n"))"' *ones(1,512)). *n;
noi pw =sum( noi se. "2, 2)/512
SNR=10*1| 0og10( si gpwr . / noi pw ) ;

x=si gnal +noi se;

for snr=1:1ength(anpl)

[cdb3(snr,:),1db3] =wavedec(x(snr,:), 3, db3");
a3db3(snr, :)=appcoef (cdb3(snr,:),1db3, " db3", 3);

[d1db3(snr,:), d2db3(snr,:),d3db3(snr,:)] =det coef (cdb3(snr,:), | db3

[1,2,3]);

[ @a4db3(snr, :), d4db3(snr, :)]=dwt (a3db3(snr,:)," ' db3");
38



[ @a5db3(snr, :),d5db3(snr,:)]=dwt (a4db3(snr,:)," ' db3"');

[cdb4(snr,:),|db4] =wavedec(x(snr,:), 3, db4");
a3db4(snr, :)=appcoef (cdb4(snr,:),1db4, "' db4', 3);

[d1ldb4(snr,:), d2db4(snr,:), d3db4(snr,:)] =det coef (cdb4(snr,:), | db4
[1,2,3]);

[ @a4db4(snr, :), d4db4(snr, :)] =dwt (a3db4(snr,:), " db4');

[ a5db4(snr, :), d5db4(snr,:)] =dwt (ad4db4(snr,:), " db4');

[ cdb5(snr,:), 1 db5] =wavedec(x(snr,:), 3,  db5");
a3db5(snr, : ) =appcoef (cdb5(snr,:),1db5, "' db5", 3);

[ didb5(snr, :), d2db5(snr, :), d3db5(snr, :)] =det coef (cdb5(snr,:), | db5
[1,2,3]);
[ @a4db5(snr, ), d4db5(snr, : )] =dw (a3db5(snr,:), 'db5 );
[ @a5db5(snr, :), d5db5(snr, :)] =dwt (a4db5(snr,:), " db5");
end

rabdb3sof t =zeros( | engt h(anpl ), | engt h(a5db3)) ; ra5db3har d=zeros(| en
gth(anpl ), | engt h(a5db3));

rad4db3soft =zeros(| engt h(anpl ), | engt h(a4db3)) ; raddb3har d=zeros(!| en
gth(anpl ), | engt h(a4db3));

ra3db3soft=zeros(| engt h(anpl), | engt h(a3db3)) ; ra3db3har d=zeros(| en
gt h(anpl), | engt h(a3db3));

rd5db3sof t =zer os(1 engt h(anpl ), | engt h(d5db3(1, :))); rd5db3hard=zero
s(l ength(ampl), | ength(d5db3(1,:)));

rd4db3sof t =zer os( | engt h(anpl ), | engt h(d4db3)); rd4db3har d=zer os(I| en
gth(anpl ), | engt h(d4db3));

rd3db3sof t =zer os( | engt h(anpl ), | engt h(d3db3)) ; rd3db3har d=zeros(| en
gth(anpl ), | engt h(d3db3));

rd2db3sof t =zer os(| engt h(anpl ), | engt h(d2db3)) ; rd2db3har d=zer os(| en
gth(anpl), | engt h(d2db3));

rdldb3sof t =zeros(| engt h(anpl ), | engt h(d1db3)); rdldb3hard=zeros(| en
gth(anpl), | engt h(d1db3));

rabdb4soft =zeros( | engt h(anpl ), | engt h(a5db4)); rab5db4har d=zer os(I| en
gth(anpl ), | engt h(a5db4));

raddb4sof t =zeros(| engt h(anpl ), | engt h(a4db4)) ; raddbdhar d=zeros(!| en
gt h(anpl ), | engt h(a4db4));

ra3db4soft =zeros(| engt h(anpl ), | engt h(a3db4)) ; ra3db4har d=zeros(!| en
gth(anpl ), | engt h(a3db4));
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rdsdb4sof t =zer os( | engt h(anpl ), | engt h(d5db4));
gth(anpl), | engt h(d5db4));

rd4ddb4sof t =zer os(1 engt h(anpl ), | engt h(d4db4));
gth(anpl), | engt h(d4db4));

rd3db4sof t =zer os( 1 engt h(anpl ), | engt h(d3db4));
gth(anpl ), | engt h(d3db4));

rd2db4sof t =zer os(1 engt h(anpl ), | engt h(d2db4));
gth(anpl ), | engt h(d2db4));

rdildb4soft=zeros(l engt h(anpl), | engt h(dldb4));
gt h(anpl), | engt h(dldb4));

rab5db5sof t =zer os( | engt h(anpl ), | engt h(a5db5));
gt h(anmpl ), | engt h(a5dbb5));

raddb5sof t =zer os( | engt h(anpl ), | engt h(a4db5));
gt h(anpl ), | engt h(a4dbb));

ra3db5sof t =zer os( | engt h(anpl ), | engt h(a3dbb));
gt h(anpl), | engt h(a3dbb));

r dsdb5sof t =zer os( | engt h(anpl ), | engt h(d5db5)) ;
gt h(anpl), | engt h(d5db5));

rd4db5sof t =zer os( | engt h(anpl ), | engt h(d4db5));
gt h(anpl ), | engt h(d4dbb5));

rd3db5sof t =zer os( 1 engt h(anpl ), | engt h(d3db5));
gt h(anpl ), | engt h(d3db5));

rd2db5sof t =zer os( | engt h(anpl ), | engt h(d2db5));
gth(anpl ), | engt h(d2db5));

rdldb5soft=zeros(l engt h(anpl), | engt h(dldb5));
gth(anpl), | engt h(d1db5));
for nmethod=1:4
i f method==

r dsdb4har d=zer os(Il en

rdddb4har d=zer os(!l en

rd3db4har d=zeros(!l en

rd2db4har d=zeros(I| en

rdidb4har d=zer os(| en

rab5db5har d=zer os(I| en

raddb5har d=zeros(!l en

ra3db5har d=zeros(I| en

r dsdb5har d=zer os( | en

r d4db5har d=zer os(Il en

r d3db5har d=zer os(1 en

rd2db5har d=zer os(!| en

rdldb5har d=zer os(!l en

r abdb3sof t =a5db3; r a5db3har d=a5db3;
ra4db3sof t =a4db3; r a4ddb3har d=a4db3;
ra3db3soft =a3db3; r a3db3har d=a3db3;
r abdb4sof t =a5db4; r abdb4har d=a5db4;
r addb4sof t =a4db4; r addb4har d=a4db4;
r a3db4sof t =a3db4; r a3db4har d=a3db4;
r abdb5sof t =a5db5; r abdb5har d=a5db5;
r a4db5sof t =a4db5; r a4ddb5har d=a4db5;
r a3db5sof t =a3db5; r a3db5har d=a3db5;
nmet hod1=' no operation on approxi mati on coeff."';
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el seif nmet hod==2
for snr=1:1ength(anpl)

[ra5db3soft (snr,:), rasbdb3hard(snr, :), kura5db3(snr)] =kurtosi stest(
abdb3(snr,:), kurlinm;

[rad4db3soft (snr,:), raddb3hard(snr, :), kuraddb3(snr)] =kurt osi stest (
a4db3(snr,:), kurlin;

[ra3db3soft (snr,:), ra3db3hard(snr,:), kura3db3(snr)]=kurt osi stest (
a3db3(snr,:), kurlin;

[ rabdb4soft (snr,:), rabdbdhard(snr, :), kura5db4(snr)] =kurt osi stest (
abdb4(snr,:), kurlim;

[rad4db4soft (snr,:), raddbdhard(snr, :), kuraddb4(snr)] =kurtosi stest (
a4db4(snr,:), kurlinm;

[ra3db4soft(snr,:),ra3db4dhard(snr,:), kura3db4(snr)]=kurtosi stest(
a3db4(snr,:), kurlin;

[ rabdb5soft (snr,:), rabdb5hard(snr, :), kura5db5(snr)] =kurt osi stest (
abdb5(snr, ), kurlin;

[ raddb5soft (snr,:), raddb5hard(snr, :), kuraddb5(snr)] =kurt osi stest (
a4db5(snr, ), kurlin;

[ra3db5soft(snr,:), ra3db5hard(snr, :), kura3db5(snr)] =kurt osi stest (
a3db5(snr, ), kurlinm;

end

met hod1=" usi ng t hreshol d on approxi mati on
coeff."';

el sei f net hod==3
rab5db3sof t=nmedfilt1(a5db3', 3)';ra5db3hard=rab5db3soft;
raddb3soft=nmedfiltl1l(a4db3', 3)';rad4db3hard=raddb3soft;
ra3db3soft=nmedfilt1l(a3db3', 3)';ra3db3hard=ra3db3soft;
rabSdb4sof t=nedfilt1(a5db4', 3)';ra5db4hard=ra5db4soft;
raddb4soft=nmedfilt1(a4db4', 3)';raddbdhard=raddbisoft;
ra3db4sof t =medfilt1(a3db4', 3)';ra3db4hard=ra3db4soft;
rab5db5sof t =medfilt 1(a5db5', 3)'; ra5db5har d=rabdb5soft;
raddb5sof t=nmedfilt1l(a4db5', 3)';rad4db5hard=raddb5soft;
ra3db5soft=nmedfiltl1l(a3db5', 3)';ra3db5hard=ra3db5soft;

nmet hod1="using nmedfilt3 on approxi mation coeff.";
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el se

rra5db3=xcorr (a5db3', 2, "' unbi ased' ) ; rrab5db3=rra5db3(3: 5, 4*[ 0: 2] +1)

rraddb3=xcorr (a4db3', 2, unbi ased' ); rra4db3=rra4db3(3:5, 4*[ 0: 2] +1)

rra3db3=xcorr (a3db3', 2, unbi ased' ); rra3db3=rra3db3(3:5, 4*[ 0: 2] +1)

rrabdb4=xcorr (abdb4', 2, "' unbi ased'); rrab5db4=rrab5db4(3: 5, 4*[ 0: 2] +1)

rraddb4=xcorr (a4db4', 2,' unbi ased'); rraddb4=rrad4db4(3:5, 4*[0: 2] +1)

rra3db4=xcorr(a3db4', 2,"' unbi ased'); rra3db4=rra3db4(3:5, 4*[0: 2] +1)

rra5db5=xcorr (a5db5', 2, " unbi ased' ); rra5db5=rra5db5(3:5, 4*[ 0: 2] +1)

rraddb5=xcorr (a4db5', 2, "' unbi ased' ) ; rraddb5=rra4db5(3:5, 4*[ 0: 2] +1)

rra3db5=xcorr (a3db5', 2,"' unbi ased' ) ; rra3db5=rra3db5(3:5, 4*[0: 2] +1)
| for snr=1:1ength(anpl)
Rxa5db3=t oepl i tz(rra5db3(:, snr)); Rxxa5db3=Rxa5db3(1: 2, 1: 2);
Rxad4db3=t oeplitz(rrad4db3(:, snr)); Rxxaddb3=Rxa4db3(1: 2, 1: 2);
Rxa3db3=t oeplitz(rra3db3(:, snr)); Rxxa3db3=Rxa3db3(1: 2, 1: 2);
Rxa5db4=t oeplitz(rrab5db4(:, snr)); Rxxa5db4=Rxa5db4(1: 2, 1: 2);
Rxaddb4=t oeplitz(rraddb4(:,snr)); Rxxaddb4=Rxaddb4(1: 2, 1: 2);
Rxa3db4=t oepl i tz(rra3db4(:, snr)); Rxxa3db4=Rxa3db4(1: 2, 1: 2);
Rxa5db5=t oepl it z(rra5db5(:, snr)); Rxxa5db5=Rxa5db5(1: 2, 1: 2);
Rxa4db5=t oeplitz(rraddb5(:,snr)); Rxxa4db5=Rxad4db5(1: 2, 1: 2);
Rxa3db5=t oepl i tz(rra3db5(:, snr)); Rxxa3db5=Rxa3db5(1: 2, 1: 2);
aabdb3=Rxxa5db3\ Rxa5db3(2: 3, 1) ;
aa4db3=Rxxa4db3\ Rxa4db3(2: 3, 1) ;
aa3db3=Rxxa3db3\ Rxa3db3(2: 3, 1) ;

aa5db4=Rxxa5db4\ Rxa5db4( 2: 3, 1) ;
aa4db4=Rxxaddb4\ Rxa4db4(2: 3, 1) ;
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aa3db4=Rxxa3db4\ Rxa3db4(2: 3, 1) ;
aa5db5=Rxxa5db5\ Rxa5db5(2: 3, 1) ;
aaddb5=Rxxa4db5\ Rxa4db5(2: 3, 1) ;
aa3db5=Rxxa3db5\ Rxa3db5(2: 3, 1) ;
rabdb3soft(snr,:)=filter([O;
aab5db3], 1, a5db3(snr,:));
raddb3soft(snr,:)=filter([0;
aa4db3], 1, a4db3(snr,:));
ra3db3soft(snr,:)=filter([0;
aa3db3], 1, a3db3(snr,:));
rabdb4soft(snr,:)=filter([0;
aabdb4], 1, abdb4(snr,:));
raddb4soft(snr,:)=filter([0O;
aaddb4], 1, a4db4(snr,:));
ra3db4soft(snr,:)=filter([O;
aa3db4], 1, a3db4(snr,:));
rabdb5soft(snr,:)=filter([O;
aab5db5], 1, abdb5(snr, :));
raddb5soft(snr,:)=filter([0;
aa4dbb], 1, a4db5(snr,:));
ra3db5soft(snr,:)=filter([0O;
aa3db5], 1, a3db5(snr,:));
end

rabdb3soft(:, 1: 2)=a5db3(:, 1: 2);
raddb3soft(:, 1: 2)=a4db3(:, 1: 2);
ra3db3soft(:, 1:2)=a3db3(:, 1:2);
rabdb4soft (:, 1: 2) =abdb4(:, 1: 2);
raddb4soft(:, 1: 2) =a4db4(:, 1: 2);
ra3db4soft(:, 1:2)=a3db4(:, 1: 2);
rab5db5soft (:, 1: 2) =a5db5(:, 1: 2);
raddb5soft(:, 1: 2)=a4db5(:, 1: 2);
ra3db5soft(:, 1: 2)=a3db5(:, 1: 2);

r abdb3har d=r a5db3soft ;
r a4db3har d=r a4db3soft ;
r a3db3har d=r a3db3soft;
r abdb4har d=r a5db4soft ;
r a4ddb4har d=r a4db4soft ;
r a3db4har d=r a3db4soft ;
r abdb5har d=r abdb5soft ;
raddb5har d=r a4db5sof t;
r a3db5har d=r a3db5soft;
met hod1l=" predi cti on on approxi mati on coeff.";
end

for snr=1:1ength(anpl)

[ rd5db3soft (snr,:), rdsdb3hard(snr, :), kurd5db3(snr)]=kurt osi stest(
d5db3(snr, ), kurlin;

[ rd4db3soft (snr,:), rd4db3hard(snr, :), kurd4db3(snr)] =kurt osi stest (
d4db3(snr,:), kurlin;
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[rd3db3soft(snr,:), rd3db3hard(snr,:), kurd3db3(snr)] =kurtosi stest(

d3db3(snr,:), kurlim;

[rd2db3soft (snr,:), rd2db3hard(snr, :), kurd2db3(snr)] =kurt osi st est (

d2db3(snr,:), kurlim;

[rdidb3soft(snr,:), rdldb3hard(snr,:), kurdldb3(snr)]=kurt osi stest (

didb3(snr,:), kurlim;

[ rd5db4soft (snr,:), rdsdbdhard(snr,:), kurd5db4(snr)]=kurt osi stest (

ds5db4(snr,:), kurlinm;

[ rd4db4soft (snr,:), rd4dbdhard(snr, :), kurd4db4(snr)] =kurt osi stest (

d4db4(snr,:), kurlinm;

[rd3db4soft(snr,:), rd3db4dhard(snr,:), kurd3db4(snr)] =kurtosi stest(

d3db4(snr,:), kurlim;

[rd2db4soft (snr,:), rd2db4dhard(snr, :), kurd2db4(snr)] =kurt osi stest (

d2db4(snr,:), kurlim;

[rdildb4soft (snr,:), rdldbdhard(snr,:), kurdldb4(snr)]=kurtosi stest (

didb4(snr,:), kurlim;

[ rd5db5soft (snr,:), rdsdb5hard(snr, :), kurd5db5(snr)] =kurt osi stest (

d5db5(snr, ), kurlim;

[ rd4db5soft (snr,:), rd4db5hard(snr, :), kurd4db5(snr)] =kurt osi stest (

d4db5(snr,:), kurlim;

[ rd3db5soft (snr,:), rd3db5hard(snr, :), kurd3db5(snr)]=kurtosi stest(

d3db5(snr,:), kurlim;

[rd2db5soft (snr,:), rd2db5hard(snr, :), kurd2db5(snr)] =kurt osi st est (

d2db5(snr, :), kurlim;

[rdldb5soft(snr,:), rdldb5hard(snr,:), kurdldb5(snr)] =kurt osi st est (

didb5(snr, ), kurlinm;
end

R5db3sof t =[ ra5db3sof t
rd3db3soft rd2db3soft rdldb3soft];

R5db3har d=[ r abdb3hard
rd3db3hard rd2db3hard rdldb3hard];

R4db3sof t =[ rad4db3soft
rd2db3soft rdildb3soft];

R4db3har d=[ r a4db3har d
rd2db3hard rdidb3hard];

R3db3sof t =[ ra3db3soft
rdldb3soft];
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r d5db3sof t
r d5db3har d
r d4db3sof t
r d4db3hard

rd3db3soft

r d4db3sof t
r d4db3hard
rd3db3sof t
rd3db3hard

rd2db3soft



R3db3har d=[ ra3db3hard
rdldb3hard];

R5db4sof t =[ r a5db4sof t
rd3db4soft rd2db4soft rdldb4soft];

R5db4har d=[ r abdb4hard
rd3db4hard rd2db4hard rdldb4hard];

R4db4sof t =[ raddb4sof t
rd2db4soft rdildb4soft];

R4db4har d=[ r a4db4har d
rd2db4hard rdidb4hard];

R3db4sof t =[ ra3db4soft
rdldb4soft];

R3db4har d=[ ra3db4hard
rdldb4hard];

R5db5sof t =[ r a5db5sof t
rd3db5soft rd2db5soft rdldb5soft];

R5db5har d=[ r abdb5har d
rd3db5hard rd2db5hard rdldb5hard];

R4db5sof t =[ ra4db5sof t
rd2db5soft rdildb5soft];

R4db5har d=[ r a4db5har d
rd2db5hard rdidb5hard];

R3db5sof t =[ ra3db5sof t
rdldb5soft];

R3db5har d=[ ra3db5hard
rdldb5Shard];

for snr=1:1ength(anpl)

rd3db3hard

r dsdb4sof t
r dsdb4hard
r d4db4sof t
rdddb4hard
rd3db4sof t

rd3db4har d

r d5db5sof t
r d5db5har d
r d4db5sof t
r d4db5hard
rd3db5sof t

rd3db5har d

rd2db3hard

r d4db4sof t
r d4db4hard
rd3db4sof t
rd3db4hard
rd2db4sof t

rd2db4hard

r d4db5sof t
r d4db5hard
rd3db5sof t
rd3db5hard
rd2db5sof t

rd2db5har d

rec5db3soft (snr, :, net hod) =waver ec( R5db3soft(snr,:),[20 20 36 68

131 258 512], "' db3");

recs5db3hard(snr, :, net hod) =waver ec( R5db3hard(snr,:),[20 20

36 68 131 258 512],'db3");

rec4db3soft (snr, :, net hod) =waver ec( R4db3soft (snr,:),[36 36 68 131

258 512],' db3');

rec4db3hard(snr, :, met hod) =waver ec( R4db3hard(snr,:),[36 36

68 131 258 512],'db3");

rec3db3soft (snr, :, met hod) =waver ec( R3db3soft(snr,:),[68 68 131 258

512],' db3');

rec3db3hard(snr, :, net hod) =waver ec( R3db3hard(snr,:),[68 68

131 258 512], "' db3");

recb5db4soft (snr, :, net hod) =waver ec( R5db4soft (snr,:),[22 22 38 70

133 259 512], "' db4");
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rec5db4hard(snr, :, net hod) =waver ec( R5db4hard(snr,:),[22 22
38 70 133 259 512],"'db4");

rec4db4soft (snr, :, net hod) =waver ec( R4db4soft(snr,:),[38 38 70 133
259 512],'db4");

rec4db4dhard(snr, :, net hod) =waver ec( R4dbdhard(snr,:),[38 38
70 133 259 512],'db4");

rec3db4soft (snr, :, met hod) =waver ec( R3db4soft(snr,:),[ 70 70 133 259
512],"' db4");

rec3db4hard(snr, :, met hod) =waver ec( R3db4hard(snr,:),[70 70
133 259 512],'db4");

rec5db5soft (snr, :, net hod) =waver ec( R5db5soft(snr,:),[24 24 40 71
134 260 512],'db5");

recb5db5hard(snr, :, net hod) =waver ec( R5db5hard(snr,:),[24 24
40 71 134 260 512],"'db5");

rec4db5soft (snr, :, met hod) =waver ec( R4db5soft(snr,:),[40 40 71 134
260 512],"'db5");

rec4db5hard(snr, :, met hod) =waver ec( R4db5hard(snr,:),[40 40
71 134 260 512],' db5');

rec3db5soft (snr, :, met hod) =waver ec( R3db5soft(snr,:),[71 71 134 260
512],"' db5");

rec3db5hard(snr, :, net hod) =waver ec( R3db5hard(snr,:),[71 71
134 260 512],"'db5");
end
end
signa=repmat (signal,[1,1,4]);

nmseb5db3soft (:,trial,:)=sum(signa-
rec5db3soft).”2,2)/512;

mse5db3hard(:,trial,:)=sun((signa-
rec5db3hard). "2, 2)/512;

msed4db3soft (:,trial,:)=sun((signa-
rec4db3soft)."2,2)/512;

mseddb3hard(:,trial,:)=sum (signa-
rec4db3hard). "2, 2)/512;

mse3db3soft(:,trial,:)=sum (signa-
rec3db3soft).”2,2)/512;

nmse3db3hard(:,trial,:)=sum(signa-
rec3db3hard) .2, 2)/512;
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nmseb5db4soft(:,trial,:)=sum(signa-
rec5db4soft).”2,2)/512;

nmseS5db4dhard(:,trial,:)=sun((signa-
rec5db4dhard). "2, 2)/512;

mseddb4soft(:,trial,:)=sun((signa-
rec4db4soft).2,2)/512;

nmseddb4dhard(:,trial,:)=sum (signa-
rec4db4dhard). "2, 2)/512;

nmse3db4soft (:,trial,:)=sum (signa-
rec3db4dsoft)."2,2)/512;

nmse3db4hard(:,trial,:)=sum(signa-
rec3db4hard) .2, 2)/512;

nmse5db5soft(:,trial,:)=sum(signa-
rec5db5soft)."2,2)/512;

nmse5db5hard(:,trial,:)=sun((signa-
rec5db5hard). "2, 2)/512;

mseddb5soft (:,trial,:)=sun((signa-
rec4db5soft). "2, 2)/512;

nmseddb5hard(:,trial,:)=sum (signa-
rec4db5hard). "2, 2)/512;

nmse3db5soft (:,trial,:)=sum (signa-
rec3db5soft).~2,2)/512;

nmse3db5hard(:,trial,:)=sum(signa-
rec3db5hard) .2, 2)/512;

for snr=1:21
for nmethod=1:4

cor 3db3soft(snr,trial, met hod)=xcorr (s, rec3db3soft(snr,:,nethod), 0
,'coeff');

cor 3db4soft (snr, trial, met hod) =xcorr (s, rec3db4soft(snr,:, nethod), 0
, ' coeff');

cor 3db5soft (snr,trial, met hod) =xcorr (s, rec3db5soft(snr,:, nethod), 0
,'coeff');

cor4db3soft(snr,trial, met hod) =xcorr (s, rec4db3soft(snr,:, nethod), 0
, ' coeff');

cor4db4soft(snr,trial, met hod) =xcorr (s, recd4db4soft(snr,:,nethod), 0
,'coeff');

cor4db5soft(snr,trial, met hod) =xcorr (s, recd4db5soft(snr,:, nethod), 0
,'coeff');

cor5db3soft(snr,trial, met hod) =xcorr (s, recsdb3soft(snr,:, nethod), 0
,'coeff');

cor 5db4soft(snr,trial, met hod) =xcorr (s, recsdb4soft(snr,:, nethod), 0
, ' coeff');
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cor 5db5soft (snr,tri

,'coeff');

cor 3db3hard(snr,tri

,'coeff');

cor 3db4hard(snr, tri

,'coeff');

cor 3db5hard(snr, tri

,'coeff');

cor4db3hard(snr,tri

,'coeff');

cor4db4hard(snr,tri

,'coeff');

cor 4db5hard(snr, tri

,'coeff');

cor 5db3hard(snr,tri

,'coeff');

cor 5db4hard(snr,tri

, coeff');

cor 5db5hard(snr,tri

,'coeff');
end
end
end

save(sprintf (' mee¥%s3lvl', sigtypes),’
3hard', ' nse3db4soft’', ' nse3dbdhard',’

save(sprintf (' nee%s4lvl', sigtypes),’
3hard', ' nseddb4soft', ' nseddbsdhard',’

save(sprintf (' mse%s5lvl', sigtypes),’
3hard', ' nseb5db4soft’', ' nse5db4dhard' ,’

met hod) =xcorr (s,

met hod) =xcorr (s,

met hod) =xcorr (s,

nmet hod) =xcorr (s,

nmet hod) =xcorr (s,

met hod) =xcorr (s,

nmet hod) =xcorr (s,

nmet hod) =xcorr (s,

nmet hod) =xcorr (s,

met hod) =xcorr (s,

rec5db5soft (snr,

rec3db3hard(snr,

rec3db4hard(snr,

rec3db5har d(snr,

rec4db3hard(snr,

rec4db4hard(snr,

rec4db5har d(snr,

rec5db3hard(snr,

recbdb4hard(snr,

recs5db5hard(snr,

met hod), O

met hod), O

nmet hod), O

nmet hod), 0

nmet hod), O

met hod), O

nmet hod), O

nmet hod), 0

nmet hod), 0

met hod), O

nsened' , ' nee3db3soft', ' nse3db
nmse3db5soft' , ' nse3db5hard')

nsened' , ' nse4db3soft', ' nseddb
nseddb5soft' , ' nsed4db5hard')

nsemed' , ' nsebdb3soft', ' nee5db
mse5db5soft' , ' nse5db5hard')

save(sprintf('cor%3lvl', sigtypes), ' cor3db3soft',' cor3db3hard' ,'c
or 3db4soft',' cor3db4dhard',' cor3db5soft’, "' cor3db5hard')

save(sprintf (' cor%4lvl', sigtypes), ' cord4db3soft’',' cord4db3hard' ,'c
or4db4soft', ' cor4db4dhard',' cor4db5soft’, ' cor4db5hard')

save(sprintf (' cor%5lvl', sigtypes), ' cor5db3soft’',' corbdb3hard','c
or 5db4soft', ' cor5dbdhard', ' cor5db5soft', ' cor5db5hard')

end
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C.

SUB FUNCTIONS
1 MakeSignal

This codeis part of Wavelab verson 802 [11].

function sig = MakeSi gnal ( Nane, n)

% MakeSi gnal -- Make artificial signa
% Usage

% si g = MakeSi gnal ( Name, n)

% Inputs

%

Nane string: 'HeaviSine', 'Bunps', 'Blocks',

% "Doppler', 'Ranp', 'Cusp', 'Sing', 'H Sine',
% "LoSine', "LinChirp', 'TwoChirp', 'QuadChirp'
% "M shMash', ' Werner Sorrows' (Heisenberg),
% ' Leopol d' (Kronecker), 'Piece-Regular' (Piece-Wse
Snoot h) ,
% "Ri emann' , ' HypChirps','LinChirps', 'Chirps', 'Gbor’
% ' si neoneover x', ' Cusp2',' Snoot hCusp', ' Gaussi an'
% " Pi ece-Polynom al' (Piece-Wse 3rd degree pol ynom al)
% n desired signal length
% CQutputs
% sig 1-d signa
%
% References
% Various articles of D.L. Donoho and |I.M Johnstone
%
if nargin > 1,
t =(1:n) ./n;
end
i f strcnp(Nane,' Heavi Si ne'),
sig = 4.*sin(4*pi.*t);
sig =sig - sign(t - .3) - sign(.72 - t);
el seif strcnp(Name, ' Bunps'),
pos = [ .1 .13 .15 .23 .25 .40 .44 .65 .76 .78 .81];
hgt =[ 4 5 3 4 5 4.22.143 3.15.14.2];
wh =[.005 .005 .006 .01 .01 .03 .01 .01 .005 .008
. 005];
sig = zeros(size(t));

for j =1:1ength(pos)
sig =sig + hgt(j)./( 1 + abs((t -

pos(j))./wth(j)))."4;

end
el sei f strcnp(Nane, ' Bl ocks'),

4.2)1;

pos = [ .1 .13 .15 .23 .25 .40 .44 .65 .76 .78 .81];
hgt = [4 (-5) 3 (-4) 5 (-4.2) 2.1 4.3 (-3.1) 2.1 (-
sig = zeros(size(t));

for j=1:1ength(pos)
sig =sig + (1 + sign(t-pos(j))).*(hgt(j)/2) ;
end
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el sei f strcnp(Nane, ' Doppl er'),

sig =sqgrt(t.*(1-t)).*sin((2*pi*1.05) ./(t+.05));

el seif strcnp(Nane,' Ranp'),
sig =1t - (t >=.37);
el seif strcnp(Nane,' Cusp'),
sig = sqrt(abs(t - .37));
el seif strcnp(Name,' Sing'),
k = floor(n * .37);
sig =1 ./abs(t - (k+.5)/n);
el seif strcnp(Nane,' H Sine'),
sig =sin( pi * (n* .6902) .* t);
el seif strcnp(Nane,' LoSine'),
sig =sin( pi * (n* .,3333) .* t);
el seif strcnp(Nane, ' LinChirp'),
sig =sin(pi .*t .* ((n.* .500) .* t));
el seif strcnp(Nanme,' TwoChirp'),
sig=sin(pi .*t .* (n .*t)) + sin((pi/3)

Kt));

el seif strcnp(Name,' QuadChirp'),
sig =sin( (pi/3) .*t .* (n.*1t."2));

H Si ne

oo (n

LinChirp +

el seif strcnp(Name,' M shMash'), % QuadChirp +
sig =sin( (pi/3) .*t .* (n .*t."2)) ;
sig =sig+ sin( pi * (n* .6902) .* t);
sig =sig + sin(pi .*t .* (n.* .125 .* t));

el sei f strcnp(Nane, ' Wer ner Sorrows' ),

sig=sin( pi .*t .* (n/f2 .* t.72)) ;

sig =sig+ sin( pi * (n* .6902) .* t);

sig=sig+ sin(pi .*t .* (n.*1));

pos = [ .1 .13 .15 .23 .25 .40 .44 .65 .76 .78 .81];
hgt =[ 4 5 3 4 5 422143 3.15.14.2];
wh =[.005 .005 .006 .01 .01 .03 .01 .01

. 005];

for j =1:1ength(pos)
sig =sig + hgt(j)./( 1 + abs((t -

pos(j))./wth(j)))."4;

end
el sei f strcnp(Nane, ' Leopold'),
sig = (t ==floor(.37 * n)/n); % Kronecker
el seif strcnp(Nane, ' Ri emann'),
sqn = round(sqrt(n));

. 005 .008

sig=t .*0;, %R emann's Non-differentiable Function

sig((1l:sqgn).”2) = 1. ./ (1:sgn);
sig =real(ifft(sig));

el seif strcnp(Name,' HypChirps'), % Hyperbolic Chirps of

Mal | at's book

al pha= 15*n*pi / 1024,

bet a = 5*n*pi /1024,

t = (1.001:1:n+.001)./n;

f1 = zeros(1,n);

f2 = zeros(1,n);

fl = sin(alpha./(.8-t)).*(0.1<t).*(t<0.68);
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f2 sin(beta./(.8-t)).*(0.1<t).*(t<0.75);

M round( 0. 65*n);

P = floor(M4);

envel oppe = ones(1,M; %the rising cutoff function
envel oppe(1: P) = (1+sin(-pi/2+((1:P)-ones(1,P))./(P-

1)*pi)) /2
envel oppe(M P+1: M = reverse(envel oppe(1:P));
env = zeros(1,n);
env(ceil (n/10): Mtceil (n/10)-1) = envel oppe(1l:M;
sig = (f1+4f2). *env;

el seif strcnp(Name,' LinChirps'), % Linear Chirps of
Mal | at' s book

b = 100*n*pi / 1024;

a = 250*n*pi / 1024;

t = (1:n)./nm

Al =sqrt((t-1/n).*(1-t));

sig = Al.*(cos((a*(t).”2)) + cos((b*t+a*(t)."2)));

el seif strcnp(Name, ' Chirps'), % M xture of Chirps of
Mal | at' s book

t (1:n)./n.*10. *pi ;

f1l = cos(t.”2*n/1024);
a = 30*n/ 1024,
t = (1:n)./n.*pi;
f2 = cos(a.*(t."3));
f2 = reverse(f2);
i X = (-n:n)./n.*20
g = exp(-ix."2*4*n/ 1024) ;
il = (n/2+1: n/ 2+n);
i 2 = (n/ 8+1: n/ 8+n);
] = (1:n)/n;
f3 = g(il).*cos(50.*pi.*j*n/1024);
fa = g(i2).*cos(350.*pi.*j*n/1024);
sig = f1+f2+f 3+f 4;
envel oppe = ones(1,n); %the rising cutoff function

envel oppe(1:n/8) = (1+sin(-pi/2+((1:n/8)-
ones(1,n/8))./(n/8-1)*pi))/2;
envel oppe(7*n/8+1:n) = reverse(envel oppe(1l:n/8));
sig = sig.*envel oppe;
el seif strcnp(Nane,' Gabor'), % two nodul ated Gabor
functions in
% Mal | at' s book

N = 512;

t = (-N.N*5/N,

] =(1:N./N

g = exp(-t."2*20);

il = (2*N 4+1: 2*N 4+N);

i2 = (N4+1: N 4+N);
sigl = 3*g(il).*exp(i*N 16.*pi.*j);
sig2 = 3*qg(i2).*exp(i*N 4. *pi.*j);
sig = sigl+sig?2;
el sei f strcnp(Nane, ' sineoneoverx'), %sin(1l/x) in Mallat's
book
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N = 1024;

i = (-N+1:N);

i (N = 1/100;

i = i./(N1);

sig =sin(1.5./(i));

sig = sig(513:1536);

el sei f strcnp(Name, ' Cusp2'),

= 64,

i = (L:N./N

X = (1l-sqrt(i)) +i/2 -.5;

M= 8*N,

sig = zeros(1, M;
sig(M1.5 *N+1: M.5*N) = x;
sig(M2.5*N+2: M 1. 5. *N+1) = reverse(x);
Sig(3*N+1:3*N + N) = .5*ones(1,N);

el seif strcnp(Nanme,' Snoot hCusp' ),
sig = MakeSi gnal (' Cusp2');

N = 64;
M = 8*N,;
t = (1:M/M

sigma = 0.01;
g = exp(-.5.*(abs(t-
.5)./sigm)."2)./sigma./sqrt(2*pi);
g = fftshift(g);
sig2 = iconv(g' ,sig)' /M
el seif strcnp(Nane, ' Pi ece-Regul ar'),
si gl=- 15*MakeSi gnal (' Bunps', n);
t = (1:fix(n/12)) ./fix(n/12);
Si g2=-exp(4*t);
t = (L:fix(n/7)) ./fix(n/7);
si gb=exp(4*t)-exp(4);
t = (:fix(n/3)) ./fix(n/3);
si gma=6/ 40;
Si g6=-70*exp(-((t-1/2).*(t-1/2))/(2*si gmar2));
sig(l:fix(n/7))= sig6(1:fix(n/7));

sig((fix(n/7)+1):fix(n/5))=0.5%sig6((fix(n/7)+1):fix(n/5)):
sig((fix(n/5)+1):fix(n/3))=sig6((fix(n/5)+1):fix(n/3));

sig((fix(n/3)+1):fix(n/2))=sigl((fix(n/3)+1):fix(n/2));

sig((fix(n/2)+1): (fix(n/2)+fix(n/12)))=sig2;

sig((fix(n/2)+2*fix(n/12)):-
1: (fix(n/2)+fix(n/12)+1))=sig2;
sig(fix(n/2)+2*fix(n/12)+fix(n/20)+1: (fix(n/2)+2*fix(n/12)+3*fi x(
n/20)))=..
-ones(1, fix(n/2)+2*fix(n/12)+3*fix(n/20)-fix(n/2)-2*fix(n/12)-
fix(n/20))*25;

k=fix(n/2)+2*fix(n/12)+3*fi x(n/20);

sig((k+1): (k+fix(n/7)))=sigb

di ff=n-5*fix(n/5);

sig(5*fix(n/5)+1:n)=sig(diff:-1:1);
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% zer o- mean
bi as=sun(sig)/n;
si g=bi as-si g;
el seif strcnp(Nanme,' Pi ece-Pol ynom al'),

t = (1:fix(n/5)) ./fix(n/5);
Si g1=20*(t."3+t."2+4);
Si g3=40*(2.*t."3+t) + 100;
si g2=10. *t. "3 + 45;
si g4=16*t."2+8. *t +16;
si g5=20*(t +4) ;
sig6(1l:fix(n/10))=ones(1,fix(n/10));
si g6=si g6* 20;
sig(l:fix(n/5))=sigl;
sig(2*fix(n/5):-1:(fix(n/5)+1))=sig2;
sig((2*fix(n/5)+1):3*fix(n/5))=sig3;
sig((3*fix(n/5)+1):4*fix(n/5))=sig4;
sig((4*fix(n/5)+1):5*fix(n/5))=sig5(fix(n/5):-1:1);
di ff=n-5*fix(n/5);
sig(5*fix(n/5)+1:n)=sig(diff:-1:1);
%i g((fix(n/20)+1): (fix(n/20)+fix(n/10)))=-

ones(1,fix(n/10))*20;

si g((fix(n/20)+1): (fix(n/20)+fix(n/10)))=ones(1,fix(n/10))*

sig((n-fix(n/10)+1): (n+fix(n/20)-
fix(n/10)))=ones(1,fix(n/20))*150;

% zer o- mean

bi as=sun(sig)/n;

si g=si g- bi as;

el seif strcnp(Name, ' Gaussi an'),

si g=GAN( n, bet a) ;

g=zeros(1,n);

I i mral pha*n

mul t =pi / (2*al pha*n) ;

g(l:lim=(cos(mult*(1:1im))."2;

g((n/2+1):n)=g((n/2):-1:1);

g = rnshift(g,n/2);

g=g/ norn(g);
si g=i conv(g, siQg);
el se
di sp(sprintf(' MakeSignal: | don*t recognize

<<¥s>>', Nane))
di sp(' Al |l owabl e Nanes are: ")

di sp(' Heavi Si ne'),
di sp(' Bunps'),

di sp(' Bl ocks"),

di sp(' Doppler'),

di sp(' Ranp'),

di sp(' Cusp'),

di sp(' Crease'),

di sp('Sing'),

di sp(' H Sine'),

53



di sp(' LoSi ne'),
di sp(' LinChirp'),
di sp(' TwoChirp'),
di sp(' QuadChirp'),
di sp(' M shMash'),
di sp(' Werner Sorrows'),
di sp(' Leopol d'),
di sp(' Sing'),
di sp(' Hi Sine'),
di sp(' LoSi ne'),
di sp(' LinChirp'),
di sp(' TwoChirp'),
di sp(' QuadChirp'),
di sp(' M shivash'),
di sp(' Werner Sorrows' ),
di sp(' Leopol d'),
di sp(' R emann'),
di sp(’ HypChirps'),
di sp(' Li nChirps'),
di sp(' Chirps'),
di sp(' si neoneoverx'),
di sp(' Cusp2'),
di sp(' Snoot hCusp'),
di sp(' Gabor'),
di sp(' Pi ece-Regul ar');
di sp(' Pi ece-Pol ynom al ') ;
di sp(' Gaussi an');
end

%
% Originally made by David L. Donoho.
% Functi on has been enhanced.

%

% Part of WavelLab Version 802

% Bui |t Sunday, October 3, 1999 8:52:27 AM
% This is Copyrighted Materi al

% For Copyi ng perm ssions see COPYI NG m

% Conmrents? e-nmi|l wavel ab@t at. st anford. edu
%



2. Kurtosistest

% kurtosi stest: inplenments thebootstrap-based hypot hesi s %

% test H kurtosis of the input=3 against %
% kurtosis of input~=3 and perfornms soft and %
% hard threshol ding on the data %
% %
% SYNTAX . [soft, hard, kur] = kurtosistest[data, kurlin] %
% %
% | NPUT . data: data sequence to be tested %
% kurlim kurtosis limt not to be exceeded %
% t hr eshol di ng %
% %
% OUTPUT . soft: soft threshol ded data %
% hard: hard threshol ded data %
% kur: kurtosis value used in soft threshol di ng%
% %
% SUB FUNC : none %
% %
% Witten by Hasan E. KAN %

function [varargout]=kurtosistest(varargin);

dat ai n=varargi n{1};
kurl i mevar ar gi n{2};

har dout =zer os(si ze(datai n));

t est =boottest (datain, ' kurtosis', 3,1,.05,99,25);
if test==1
sof t out =dat ai n;
har dout =dat ai n;
kur =-1;
el se
storage=[]; t enp=dat ai n;
kur =nean( boot strp(99, "' kurtosis',datain));
whil e kur>kurlim
i f length(storage)>round(length(tenp)/3)
kur =kur i m
el se
| ocati ons=fi nd(abs(tenp)==max(abs(tenp)))"’;
st orage=[ storage; |ocations];
tenp(l ocati ons) =0;
kur =nean( boot strp(99, ' kurtosis',tenp));
end
end
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sof t out =dat ai n*abs(3-kur)/ (kurlim3);
if ~isenpty(storage)
sof t out (st or age) =dat ai n( st or age) ;
har dout ( st or age) =dat ai n( st or age) ;
end
end

var ar gout { 1} sof tout ;

varargout {2} = hardout;
varargout {3} = kur
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APPENDIX B. SIMULATION RESULTS

Smulation resultsfor the three test signd types are presented in detall in this
Appendix. Descriptions for these test Sgnals were given in Chapter 4. Resultsinclude
performance criteria obtained for the MSE and distance measure defined in Chapter 4 for
SNR levels between —6 to 6 dB, for one hundred trids per SNR levd. Findly, the
origind, noisy and the recovered versons of onetrid are shown for SNR vaues—6 dB,

0 dB and 6 dB to provide a visud representation of the FFT-based denoising scheme.

A. FFT-BASED DENOISING
1 Sinusoidal Signal

The frequency for the snusoidal Sgna was selected randomly for each of the 100
trids so as to generdize the Smulation results. The frequency was limited to avoid
diasang or DC ggnds. Minimum and maximum alowed frequencies for the Snusoidd
test Sgnd inthe smulaionswere 2/512 Hz and 241/512 Hz respectively, where the
sampling frequency was selected as 1 Hz. Figure 13 shows the performance curves for
FFT-based denoising scheme. These curvesindicate that the thresholding schemes
perform smilarly on thistype of signd. Figures 14 to 16 illugtrate noisy and recovered
versons of asnusoidd signd at SNR vaues of —6 dB, 0 dB and 6 dB respectively.
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(a) Distance measure for sinusoidal signal
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Figure 13.  FFT-based denoising for snusoidal signal type.
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Figure 14.  FFT-based denoising for snusoida signal type, SNR=—6 dB.
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Figure 15.

FFT-based denoising for sinusoidal signd type, SNR=0 dB.



Original signal
[ [ [ [ [ [ [ [ [ [
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Recovered signal with hard thresholding
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Figure 16.  FFT-based denoising for sinusoidd signa type, SNR=6 dB.
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2. Congtant Amplitude Chirp Signal

Soft and hard thresholding perform smilarly according to MSE. However, the
distance measure shows that soft thresholding outperforms hard thresholding, especialy
at low and medium SNRs. Thisresult can be seen in Figure 17. Figures 18 to 20 illudtrate
noisy and recovered versons of asnusoidd signd a SNR vaues of -6 dB, 0 dB and
6 dB respectively.

(a) Distance measure for constant amplitude chirp signal

0. T T T T T
—+- hard
0.3 —©— soft |
q
do.2 .
0.1 -
L B—H
6 4 -2 0 2 4 6
SNR o
(b) MSE for constant amplitude chirp signal
1OOE\ T T T T T
—+&- hard
—o— soft
MSE
10"} i
I I I I I \)
-6 -4 -2 0 2 4 6
SNR

Figure17. FFT-based denoising for constant amplitude chirp type signal.
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Original signal
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Figure 18.  FFT-based denoising for constant amplitude chirp type, SNR=—6 dB.
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50

200 250 300 350 400 450 500

FFT-based denoising for constant amplitude chirp type, SNR=0 dB.
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Figure20.  FFT-based denoising for constant amplitude chirp type, SNR=6 dB.
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3. Chirp with an Amplitude that Increasesin an RC Time Constant
Fashion

The results shown in Figure 21 indicate that the thresholding schemes have
amilar MSE performances at SNIR vaues lower than —3 dB, whereas soft thresholding
performs better at higher SNRs. According to the distance measure d, soft thresholding is
better at dll SNR levels. Figures 22 to 24 illustrate noisy and recovered versons of a
snusoidd Sgnd at SNR vaues of —6 dB, 0 dB and 6 dB respectively.

(a) Distance measure for increasing amplitude chirp signal
05 T T T T

—+ hard
—©— soft

0 I I t €

6 -4 2 0 2 4 6
. SNR L
(b) MSE for increasing amplitude chirp signal
0 T T T T T
10 -5 hard ||
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MSE -0.4

10 r .
i
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-6 -4 -2 0 2 4 6
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Figure21.  FFT-based denoising for increasing amplitude chirp type signd.
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FFT-based denoising for increasing amplitude chirp type, SNR=—6 dB.
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Figure23.  FFT-based denoising for increasing amplitude chirp type, SNR=0 dB.
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Figure24.  FFT-based denoising for increasing amplitude chirp type, SNR=6 dB.
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B. WT-BASED DENOISING

Many different parameters affect the performance of the WT-based denoising
scheme such as the number of decompostion levels, processing method for the
approximetion coefficients and the order of the Daubechies wavelet used. Results show
no significant difference among the Daubechies wavelet orders consdered. Only best
results for each Sgnd areillugtrated in this section. Results shown include M SE and
distance measure performances for SNR level s between —6 to 6 dB, where one hundred
trids are used for each SNR leved. Noisy and recovered versons of onetrid are shown
for SNR values—6 dB, 0 dB and 6 dB to provide avisua representation of the WT-based
denoising scheme.

1 Sinusoidal Signal

Soft thresholding outperforms hard thresholding at low and medium SNIR levels
as shown in Figure 25. However, it does not perform as good as any of the thresholding
methods used in the FFT-based denoising case for this Sgna type. Noisy and recovered
verdons of agnusoidd sgnd a SNR vauesof —6 dB, 0 dB and 6 dB are shownin
Figures 26 to 28.
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(a) Distance measure for sinusoidal signal, 4 level decomposition, method 2
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(b) MSE for sinusoidal signaI,S4NIReveI decomposition, method 2
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Figure25. WT-based denoising for snusoida signa type, 4 level, method 2, with Daubechies
wavelet orders 3, 4 and 5.
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Figure26. WT-based denoising for sinusoidal signa type, 4 level, method 2, Daubechies wavelet 4,
SNR=-6 dB.
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Figure27. WT-based denoising for snusoida signal type, 4 level, method 2, Daubechies wavelet 4,

SNR=0 dB.
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Figure28. WT-based denoising for snusoida signd type, 4 level, method 2, Daubechies wavelet 4,
SNR=6 dB.
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2. Congant Amplitude Chirp

Resultsin Figure 29 show that soft and hard thresholding performances are
samilar for thissgnd when usng WT-based denoising scheme. The WT-based scheme
performs better than the FFT-based scheme on thissgnal. Figures 30 to 32 illustrate
noisy and recovered versons of asinusoidd signa at SNR vaues of -6 dB, 0 dB and
6 dB respectively.

(a) Distance measure for constant amplitude chirp signal, 4 level decomposition, method 1
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Figure29. WT-based denoising for constant amplitude chirp type, 4 level, method 1, with

Daubechies wavelet orders 3, 4 and 5.
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Figure30.  WT-based denoising for constant amplitude chirp type, 4 level, method 1, Daubechies
wavelet 4, SNR=—6 dB.
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Figure31l. WT-based denoising for constant amplitude chirp type, 4 level, method 1, Daubechies

wavelet 4, SNR=0 dB.
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Figure32.  WT-based denoising for constant amplitude chirp type, 4 level, method 1, Daubechies
wavelet 4, SNR=6 dB.
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3. Chirp with an Amplitude that Increasesin an RC Time Constant
Fashion

Soft and hard thresholding methods perform similarly according to the
performance criteria shown in Figure 33. WT-based denoising scheme outperforms FFT-
based denoising scheme on this signa. Figures 34 to 36 illustrate noisy and recovered
verdons of agnusoidd sgnd a SNR vaues of —6 dB, 0 dB and 6 dB respectively.

(a) Distance measure for increasing amplitude chirp signal, 4 level decomposition, method 1
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Figure33.  WT-based denoising for increasing amplitude chirp type, 4 level, method 1, with
Daubechies wavelet orders 3, 4 and 5.
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Figure34. WT-based denoising for increasing amplitude chirp type, 4 level, method 1, Daubechies
wavelet 5, SNR=6 dB.

80



Original signal

[ [ [ [ [ [ [ [ [
2 - —~
0
2F -
[ [ I [ I I [ I [
0 50 150 200 = 250 300 350 400 450 500
Noisy signal (SNR=0dB)
2 =
: l
2F -
I I I I I I I I I
0 50 150 200 25 300 5 400 450 500
Recovered signal w?th soft thres%o?ding
2 - —~
0 |
2F -
I I I I I I I I I
0 50 150 200 250 = 300 350 400 450 500
Recovered signal with hard thresholding
2 - —~
ok I
2F -
I I I I I I I I I
0 50 150 200 250 300 350 400 450 500

Figure35. WT-based denoising for increasing amplitude chirp type, 4 level, method 1, Daubechies

wavelet 5, SNR=0 dB.
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Figure36. WT-based denoising for increasing amplitude chirp type, 4 level, method 1, Daubechies

wavelet 5, SNR=6 dB.
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APPENDIX C. COMPARISON WITH WAVELET SHRINKAGE
ALGORITHM

The proposed denoising schemes are compared with the origind Wavelet
shrinkage adgorithm in this chapter. Waveet shrinkage dgorithm is awel-known
denoising scheme.

A. WAVELET SHRINKAGE ALGORITHM

The Wavelet shrinkage agorithm was introduced by Donoho and Johnstone [ 16,

17] to denoise Sgna's embedded in additive white Gaussan noise with unit variance.

This dgorithm has three seps:
a Wavdet transformation.

b. Noisy coefficients suppression by applying a non-linear thresholding

technique.

C. Inverse wave et transformation.
1. Choosing a Threshold Value

The following four threshold selection schemes are available:
a. Stein’s Unbiased Risk Estimator (SURE) Threshold

The SURE threshold valueis derived adaptively for each decomposition
level by minimizing the Stein’s Unbiased Estimate of risk [18] for threshold estimates.
b. Sqtwolog Threshold

This method uses afixed threshold vaue defined as:

T =4/2log(length(signal)) .
C. Heursure Threshold

This method is amixture of the preceding two methods. It uses the
Sgtwolog threshold at low SNR levels and the SURE threshold a medium to high SNR

levds.
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d. Minimax Threshold

This method uses afixed threshold that gives minimax performance for
the MSE. The minimax principleis used in gatitics in order to design estimators, which
realize the minimum of the maximum mean sguare error obtained for the wordt function
inagiven set. So, minimax threshold is the vaue that provides the minimum MSE
among the worgt threshold vaues for the detail and gpproximation coefficient sets.

2. Thresholding M ethods
a. Hard Thresholding

This method sets the coefficients with absolute values below the chosen
threshold to zero.
b. Soft Thresholding

This method first sets the coefficients with absolute values below a chosen
threshold to zero. Then, it shrinks the remaining coefficients using the relationship

c =sign(c) [|c- T1, wherec isthe coefficient to be thresholded, ¢ is the thresholded
coefficient, and T is the chosen threshold vaue.

B. COMPARISONS

Smulations were performed, using the wavelet shrinkage agorithm defined
above, on the same signals that were used for the proposed scheme. However, different
SNR vaues were obtained by using constant noise power and different vaues for the
sgnd power in this experiment, contrary to what was done in the smulations consdered
for the proposed scheme in the main body of the thesis. The Heursure method was used
to compute the threshold values for the wavelet shrinkage agorithm. A new smulation
was performed with the proposed scheme under the same SNIR conditions as well.
Results shown in Figures 37 to 39 indicate that the proposed WT-based denoising scheme
performs better than the wavelet shrinkage agorithm for the snusoida test sgndl.
However, the waveet shrinkage a gorithm outperforms the proposed scheme for the chirp
type test sgnds. It should be noted that these results are restricted to the case of noise
with unit variance.
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1 Sinusoidal Signal

Results shown in Figure 37 indicate that the M SE performances of the two
denoising dgorithms are smilar, whereas the distance measure d shows that the proposed
denoising scheme outperforms the wavelet shrinkage agorithm at low SNRs,

(a) Distance measure for sinusoidal signal, 3 level decomposition

l T T T 1 1
) —- proposed hard
0.8 —S— proposed soft N
0 6[ —0— w. shrinkage hard | |
d — w. shrinkage soft
0.4q .
0.2 -
L H—
-6 -4 -2 0 2 4 6
. ... SNR "
(b) MSE for sinusoidal signal, 3 level decomposition
0. T T T
10 —- proposed hard
—©— proposed soft
—&— w. shrinkage hard
MSE —+— w. shrinkage soft
10%°L , , :
-6 -4 -2 0 2 4 6
SNR

Figure37. Wavdet shrinkage agorithm and proposed WT-based denoising scheme performances
for the sinusoidal signd type, using 3-level decomposition and Daubechies wavelet 5.
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2. Congant Amplitude Chirp

Both performance criteria show that the wavelet shrinkage agorithm outperforms
the proposed denoising scheme for this signal. This can be seen in Figure 38.

(a) Distance measure for constant amplitude chirp, 4 level decomposition
01 T T T

—- proposed hard
0.08 —6— proposed soft
—&— w. shrinkage hard

— w. shrinkage soft ||

1.0

T

0.06
d

0.04+

0.02

| = proposed hard

-| —©— proposed soft

| —6— w. shrinkage hard
'| —— w. shrinkage soft

10' 1 1 1 1 1
-6 -4 -2 0 2 4 6

SNR

Figure 38. Waveet shrinkage agorithm and proposed WT-based denoising scheme performances
for the constant amplitude chirp type, using 4-level decomposition and Daubechies wavelet 4.
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3. Chirp With an RC Time Congant-Like Amplitude I ncrease

Both performance criteria show that the wavelet shrinkage agorithm outperforms
the proposed denoising scheme for this signa as shown in Figure 39.

(a) Distance measure for increasing amplitude chirp, 4 level decomposition

T T T

—- proposed hard
—S— proposed soft o
—&— w. shrinkage hard
—+— w. shrinkage soft

t| = proposed hard
| —©— proposed soft
r| =©— w. shrinkage hard
| —— w. shrinkage soft

10' T T 1 1 1
-6 -4 -2 0 2 4 6

SNR

Figure 39. Wavelet shrinkage agorithm and proposed WT-based denoising scheme performances
for the increasing amplitude chirp type, using 4-level decomposition and Daubechies wavelet 5.

It should be noted that the new proposed method (based on kurtosis and Bootstrap
method) seem to be inferior to the methods described in this appendix. But the methods
in this gppendix need additiond information: the variance of the noiseis unity, which
may be an unreasonable congtraint in some practica applications.
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